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1. Introduction

"In contrast to the failed training programs of the past, a job, most any job, has 
shown itself capable of generating the earnings growth which will make welfare 
reform a reality."

(Carlos Bonilla, Chief Economist, Employment Policies Institute,
testimony before the U.S. House Committee on Economic and

Educational Opportunities, January 18, 1995)

"Policy should, perhaps, concentrate more on keeping people off welfare than on 
getting them off once. It may be relatively easy to get many people a low-paying 
job, but the job may not be sustainable as a source of economic provision."

(Bane and Ellwood, p. 65)

"Neither program administrators, evaluators, nor academics have looked closely 
at job retention."

(Berg, Olson, and Conrad, p. 3)

The American public and politicians express strong support for getting welfare recipients 

to work. One rationale for this position is that getting a job may be a step forward toward a 

welfare recipient's long-run success. But will any job contribute to long-run success? Or must 

the job obtained be a "good job," or at least not too bad a job? The long run effects of getting a 

job might depend on many job characteristics: wages, on-the-job-training, promotion possibilities, 

personnel practices, and the job's match to its holder's skills.

Job quality is an important issue for welfare-to-work programs and job training programs 

for welfare recipients. These programs provide job development services, job placement services, 

and job training that will lead to particular types of jobs for their welfare recipient clients. Should 

these programs target particular types of jobs for their clients, and if so, what types? The job 

quality issue is also relevant to wage subsidy programs or economic development programs that 

seek to create better job opportunities for disadvantaged persons. Should these programs subsidize 

any job, or focus on particular types of jobs?
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An important part of the long-term effects of a welfare recipient getting a job is determined

by short-run job retention. Short-run job retention is amazingly low among welfare recipients. For 

example, at one welfare-to-work program, Project Match, researchers found that 46 percent of 

the program's clients lost their first job by three months, 60 percent by six months, and 73 percent 

by 12 months. 1 These problems with short-term job retention contribute to the extremely high 

welfare recidivism rates among women leaving welfare: one study found that 27 percent of those 

leaving welfare returned within six months (Blank and Ruggles, 1994). This Blank and Ruggles 

study of welfare recidivism concluded that "...if post-program assistance is provided to reduce 

recidivism, the crucial period is the first six months following the end of the program. Most 

women for whom jobs or income changes will not be permanent will return to public assistance 

within that period." A study by Abt Associates found statistically significant correlations between 

relatively short-term measures of labor market success and long-term success in a welfare to work 

training program (Zornitsky et al., 1988). For example, whether an individual was employed three 

months after training completion was significantly positively correlated with the net earnings gains 

attributable to the program over the entire two-and-a-half year follow-up period.

Despite the importance of short-term job retention, and the frequent discussion of job 

quality as a factor in job retention, there has been little research on this topic. A few studies have 

examined the influence of wages on job retention (see section 2), but there has been little research 

examining the effects of other job characteristics on job retention for disadvantaged persons.

'Berg, Olson, and Conrad (1992). This paper cites similarly high job loss rates hi other welfare-to-work 
programs. For example, the Enterprise Jobs program had a 31 percent job loss rate one month after the job was 
started, and 73 percent by six months later. The Massachusetts ET program, which is widely considered a highly 
successful welfare to work program, found that 12 to 16 months after a job was started, 62 percent of the program 
participants were no longer at their original job.
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This study makes some attempt to fill this gap in the research literature. Using data from 

13 years (1983-95) of the March Current Population Survey (CPS), this study focuses on single 

mothers who, during the year before the March interview, were on welfare at least part of the 

year, and were employed at least part of the year. The study estimates how the probability of a 

single mother being employed at the time of the March interview is influenced by characteristics 

of the job held during the preceding year. The job characteristics examined include not only wage 

rates, but also the job's occupation, industry, and firm size. One fourth of the sample (the 

outgoing rotation group) also reports data for March weekly earnings and wage rates. For these 

persons, this study also estimated how characteristics of jobs held last year affect March weekly 

earnings and wage rates.

The big advantage of investigating the job retention issue using the March CPS, compared 

to other possible data sets, is its large sample size. The data set used in this study has information 

on over 6000 welfare recipients who held a job during the preceding year. This large sample size 

allows this study to estimate more accurately the effects of occupation, industry, and other job 

characteristics at a finer level of detail.

The biggest disadvantage for this study of using the March CPS is the limited information 

available on the timing of welfare receipt and job holding. A job retention study would ideally 

consider individuals on welfare who then at some point got a job, and would analyze the 

determinants of their labor market outcomes some fixed amount of time later. In the present study, 

using the March CPS, we just know that the single mothers hi our sample were at some point hi 

the preceding year receiving welfare and at some point employed. These individuals could have 

had the job first, then lost the job and gone on welfare. In addition, using the March CPS it
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cannot be determined what time elapsed between when the job was first held last year, and the 

March interview. The job could have been first held last year anywhere between three months 

before the March interview (December of the previous year) and 14 months (January of the 

previous year). Even with these timing problems, however, this study's estimates still are of 

interest. The effect of past jobs on future employment prospects for disadvantaged persons is an 

important issue, above and beyond the job retention issue. If certain jobs help improve later labor 

market outcomes by providing more skills, self-confidence, a better reputation among other 

employers, better job contacts, or through other means, this is important.

The paper's estimates suggest that the wages of last year's job matter to this year's 

employment and earnings, but the effects of wages are more modest than might be expected. The 

industry and occupation of last year's job have a great deal of influence on this year's employment 

and earnings, with industry being more important than occupation. The size of the firm employing 

a welfare recipient last year has no effect on this year's employment and earnings. The industries 

that have the most positive influence on this year's employment and earnings are hospitals and 

educational services. In contrast, as one might expect, jobs held last year in the temporary help 

industry are negatively correlated with this year's employment. Among the occupations that have 

negative effects on this year's employment are handlers and laborers, and cashiers.

An important limitation of this study's findings is that it is unclear why certain types of 

jobs matter to later labor market outcomes. This study's estimates cannot reveal whether the 

characteristics of jobs matter, or whether the results are due to unobserved characteristics of 

individuals who obtain those types of jobs.2 For many purposes, however, it is of interest to
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simply know what types of jobs are associated with later success. Whether that success is due to 

the job or the person may be a secondary issue. For example, welfare-to-work programs could 

benefit from simply knowing that certain types of jobs are more strongly associated with later 

success. The program can then improve performance by targeting those types of jobs. Targeting 

jobs includes placing individuals in those types of jobs, and providing the training needed for 

success in those types of jobs.

2. Theory and Previous Research on Job Characteristics and Job Retention for 
Disadvantaged Groups

Why might job characteristics be associated with job retention for welfare recipients? One 

might expect job retention problems to arise from some mismatch between firms and the workers 

they hire. Firms may have expected skills that the workers did not provide. Workers may have 

expected job characteristics that the employer did not provide.

To give greater content to this discussion, it is useful to examine the types of jobs that are 

held by welfare recipients. As shown hi Tables 1 and 2, welfare recipients are employed in the 

types of jobs one would expect: jobs with relatively low formal educational requirements that pay 

low wages. Although these jobs have low requirements for skills acquired through formal 

education, most of these jobs do require considerable skill. In particular, many of these jobs

2Although, as will be seen below, the models used control for observed characteristics of the individuals in 
the sample, the models cannot control with unobserved individual characteristics that may be correlated with job 
characteristics. The present paper does not attempt to use instrumental variables to correct for this problem. Such 
instruments would need to be correlated with job characteristics, but uncorrelated with unobserved individual 
characteristics. Finding good instruments of this kind is difficult.



Table 1 
15 Leading Occupations of Sample of Welfare Recipients

Occupation Percentage of sample

Cashiers (276)

Nursing aides (447)

Waitresses (435)

Maids (449)

Cooks (436)

Janitors (453)

Secretaries (313)

Child care (466)

Household cleaning (407)

Assemblers (785)

Miscellaneous food preparation (444)

Textile machine operators (744)

Bartenders (434)

Miscellaneous sales (274)

Household child care (406)

Total of 15 leading occupations

9.8%

6.7

6.3

4.3

4

3.9

2.8

2.6

2.1

1.8

1.7

1.7

1.5

1.5

1.5

52.1%
of sample of 6,720 welfare recipients from 1983-95 

March Current Population Survey

Notes: This table is derived from simple tabulations of occupations of employed welfare recipients from 1983-95 
March Current Population Survey. Individuals are in sample if they are single mothers, between the ages of 16 and 
64, who received welfare during the previous year, and were employed the previous year. In addition, individuals 
were excluded from the sample if earnings and weeks worked the previous year were "allocated" by the Census 
Bureau. These occupational categories are the 3-digit categories used by the Census Bureau; the 3-digit category 
number is given in parentheses. Tabulations are unweighted, as it is unclear whether Census Bureau weights are 
appropriate after the exclusions for allocated observations.



Table 2 
15 Leading Industries of Sample of Welfare Recipients

Industry Percentage of sample

Eating and drinking places (641)

Nursing and personal care (832)

Private household services (761)

Hotels and motels (762)

Grocery stores (601)

Elementary and secondary schools (842)

Department stores (591)

Personnel supply services (731)

Hospitals (831)

Services to dwellings and buildings (722)

Child day care services (862)

Miscellaneous social services (871)

Colleges and universities (850)

Apparel and accessories (151)

Health services (840)

Total of 15 leading industries

16.4% 

5.6 

4.2 

4.1 

3.7 

3.6 

3.1 

2.9 

2.8 

2.4 

2.2 

2

1.8 

1.8 

1.7

58.1%
of sample of 6,720 welfare recipients from 1983-95 

March Current Population Survey

Notes: This table is derived from simple tabulations of industries of employed welfare recipients from 1983-95 March 
Current Population Survey. Individuals are in sample if they are single mothers, between the ages of 16 and 64, who 
received welfare during the previous year, and were employed the previous year. In addition, individuals were 
excluded from the sample if earnings and weeks worked the previous year were "allocated" by the Census Bureau. 
These industry categories are the 3-digit categories used by the Census Bureau; the 3-digit category number is given 
hi parentheses. Tabulations are unweighted, as it is unclear whether Census Bureau weights are appropriate after the 
exclusions for allocated observations.
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require skills dealing with people, particularly customers. However, the exact nature of the daily

activities and "output" of these jobs varies quite a bit from job to job.

What types of mismatches cause the most job retention problems for welfare recipients? 

There is considerable qualitative research on this topic, from case studies that interview welfare 

recipients and their employers. This case study research shows that high turnover results less from 

problems with "hard" skills (reading skills, math skills, specific vocational skills) then problems 

with "intangible" skills. These intangible skills include getting to work consistently on time, and 

getting along with customers, co-workers, and supervisors.

Consider the evidence from 50 interviews conducted with participants in the New Chance 

program, which provided young welfare mothers with preparation for getting a GED and job 

placement help (Quint, Musick, and Ladner, 1994). Quint, Musick, and Ladner concluded that

"With only a few exceptions, the respondents in this study did not leave then* jobs 
because of inability to perform the required tasks...The difficulties of many young 
women in the workplace might rather be described as relational dealing with 
supervisors, with fellow workers, with apparently arbitrary rules, and with 
favoritism and discrimination." (p. 61).

Quint, Musick, and Ladner tell the story of one woman who was given a week's suspension from 

her nursing home job because she was late for work. Her lateness occurred because her boyfriend 

drug dealer was hi jail and couldn't get her kids off to school for her:

"Delores resented her week's suspension and seemed to think that her supervisor 
should excuse her lateness because she believed she had a good reason for that 
lateness...She exemplifies this comment by one New Chance staff member: They 
[the program enrollees] think a good excuse for not doing something is as good as 
doing it.'" (p. 48)



A similar picture emerges from interviews conducted by Berg, Olson and Conrad with 58 

participants, and their employers, in Project Match, a welfare-to-work program for residents of 

the Cabrini-Green neighborhood in Chicago. (Berg et al., 1992). According to Berg et al,

"...We did not find that technical inability to do a job was a primary factor 
accounting for job loss. In 9 out of 58 cases, employers complained the worker did 
not have the skills to do some part of their job, usually running a cash register. 
There were only four cases where the inability to perform the work contributed to 
losing the job within six months. However, even hi most of these cases, clearly 
many factors contributed to the job loss it was not just a skill deficiency problem. 
For example, an 18 year old counter clerk not only had trouble filling orders and 
running a cash register, her supervisor also felt she chronically made personal 
phone calls, was absent frequently, could not get along with her co-workers, and 
was perhaps stealing from the register. The worker, in turn, felt the supervisor was 
prejudiced and unbearably demanding." (p. 14).

According to Berg et al., the problems causing job loss include absenteeism and punctuality, 

questioning orders or "having an attitude" with supervisors, and general difficulties getting along 

with supervisors and co-workers.

A study by Mathematica Policy Research mentions similar job retention problems. This 

study describes the operations of the Postemployment Services Demonstration, which provide 

intensive case management assistance to welfare recipients to avoid or respond to job loss. 

According to the study,

"Failure to comply with work schedules was a relatively common reason for job 
loss cited by staff members and clients. According to one case manager, one client 
was fired from a temporary clerical job in a health clinic because she made no 
effort to conform to her work schedule, frequently arrived late, and often left early 
for no apparent reason." (p. 69)

Clients also had trouble dealing with supervisors:

"One client acknowledged that it was difficult to go from simply being "in charge" 
of her household to being "bossed around" by others at the job. PESO clients often 
entered the workplace as the newest, least experienced employee, and several noted 
the difficulty they had assuming a subordinate role." (p.70)
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Welfare recipients also had troubles dealing with customers: "In one extreme example, a client 

lost her job when she was so offended by a customer that she assaulted him physically." (p. 70). 

Finally, the PESD study also mentions the problems some welfare recipients have with learning 

to use cash registers.

These job retention problems of welfare recipients may occur hi part because of the large 

differences between the daily activities of unemployed welfare recipients, and the daily activities 

expected of workers hi low-wage jobs. The usual daily activities of an unemployed welfare 

recipient consist of child care and home care, with no supervisors or co-workers. An unemployed 

welfare recipient largely controls her own schedule. Many low-wage jobs involve intense 

supervision, and lots of pressure to deal continually with customers and co-workers. Many long- 

term welfare recipients also lack self-confidence, which makes it more difficult to deal with an 

unfamiliar, high stress work environment. According to the PESD study,

"One client told her case manager that she had quit her job as a word processor 
because she felt "out of her league," overpaid for her skills, and under qualified 
compared with her co-workers. Another client sought support from her case 
manager because she felt overwhelmed in her soda shop job when her co-worker 
stepped outside for a cigarette break and left her alone behind the counter." (p. 72)

Jobs are more likely to be retained by welfare recipients in some occupations and 

industries. Occupations and industries differ in their pressure for timely completion of tasks, the 

strictness of supervision, and the number of interactions with co-workers or customers. 

Occupations or industries also differ in whether the skills required have much in common with 

child care or home care. Some occupations and industries may better tolerate substandard 

performance while the new worker adjusts to the job. Finally, higher wages or benefits are likely 

to make an otherwise bad job easier to endure.
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Why don't employers restructure low-education jobs to increase job retention? There are 

employer policies that can reduce worker turnover. Employers could devote more resources to 

screening prospective workers. Employers could be more tolerant of poor performance, firing 

fewer workers, and offering on-the-job-training to incumbent workers rather than hiring 

replacements. Employers could offer higher wages instead of intensive supervision, as workers 

may work harder if the work is better compensated ("efficiency wage theory").

Presumably, employers do not adopt these policies for most low-education jobs because 

these policies are more costly then the status quo. Screening may be difficult for "people skills." 

It is difficult, without expensive background checks, to make a reasonable prediction about how 

well a job applicant will get along with customers, co-workers, and supervisors. Replacements 

may be readily available for many (not all) of these low education jobs, as people skills are 

developed through life experience rather than education and training. For many of these low- 

education jobs, intensive supervision is more feasible than it is for many high education jobs. For 

example, it is easy to see whether a cashier at a fast-food restaurant is doing a good job. A 

supervisor can observe the length of the queue of customers waiting to order, listen to the 

cashier's conversations with customers, and check whether the register is "short" at the end of 

the shift. Determining the quality of output of a college professor is likely to be more difficult to 

do, certainly in the short-run and probably in the long-run.

Some employers in these low education jobs may find it in their interest to reduce 

turnover, if any of the factors mentioned above are altered. For example, if the job involves 

greater job-specific skills, making it more difficult to find replacement workers, employers will 

be more motivated to try to retain their current workers. The production process varies greatly



12 

across the industries in Table 1 and 2, and also across different-sized firms. Hence, employer

policies that affect job retention will vary quite a bit.

Why do welfare recipients and other disadvantaged workers take jobs that may quickly be 

lost? Part of the explanation is that welfare recipients may often make mistakes in pursuing job 

opportunities when dealing with an unfamiliar world, the world of work. Mistakes will occur 

because the quality of many low-education jobs varies enormously with the skill and sensitivity 

of the supervisor. This is difficult to ascertain before the job starts. In the Project Match study, 

Berg et al. mention that supervisors varied enormously hi then: tolerance of absenteeism and then: 

understanding of the challenges faced by welfare recipients. For example, some supervisors took 

a hard line on dress codes, whereas others would allow welfare recipients some time to get the 

money needed to buy the required "uniforms" for the job.

Finally, welfare recipients, and others with low educational levels and low technical skills, 

may have relatively few alternatives. If education and technical skills are lacking, a person's 

opportunities may be limited to jobs emphasizing people skills.

Little quantitative research exists on what job characteristics affect job retention for 

welfare recipients and other disadvantaged groups. Most studies find that higher wages increase 

job retention. Some studies find positive effects of wages on job retention, or negative effects on 

welfare recidivism (Nightingale, 1991; Berg et al., 1992; 9to5 Working Women Education Fund, 

1993; Pavetti, 1993). In contrast, a study of federal "on-the-job-training" (OJT) programs in 

Kalamazoo found no statistically significant relationship between the starting wage, and the 

probability of being employed 13 weeks after completing OJT (Bartik, Houseman, and Thies, 

1993).
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Only two studies, to my knowledge, have explicitly examined the effects of job

characteristics other than the wage on job retention. Bartik et al's study suggested that OJT 

participants placed at small employers (fewer than 100 employees) were significantly more likely 

to be employed at follow-up than those placed with larger employers. OJT participants placed in 

"processing and machining" occupations were less likely to be employed at follow-up, although 

this estimate was only marginally significant. A study by Leete (1996) found few strong 

relationships between the occupation and industry of the first job, and subsequent employment 

over a five year period. Her study was based on 500 welfare recipients in the National 

Longitudinal Survey of Youth (NLSY).

3. Model and Data

The models estimated are probit, tobit, and selection-bias corrected regressions using data 

on individuals. The data come from 13 March Current Population Survey data files, from 1983 

through 1995. The up to 20,830 individuals included in the models are all single mothers who 

were on welfare sometime during the year preceding the March CPS interview. The dependent 

variables are measures of the individual's labor market situation as of the March interview. The 

independent variables of most interest are characteristics of the job held during the preceding year. 

Control variables include state and year dummies and individual demographic characteristics.

The estimating equation can be written as

Yjst = B0 + Bx'Xjst + BeEjsM +BoccOCCjst. 1 + B^D^ +6^^ + B^ + Ujst 

Individuals in the sample were interviewed in March of year t. To be in the sample, persons must 

have received welfare at some time between January and December of year t-1. Yjst is some labor
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market outcome, as of March of year t, for individual j living in state s in March of year t. The 

labor market outcome for which data are available for the full sample is a zero-one dummy for 

whether the individual is employed as of the week preceding the March interview. For one-fourth 

of the sample, the "outgoing rotation group" of the CPS, data are also available for other 

measures of labor market success as of March. Hence, some models use as dependent variables 

the individual's real weekly earnings as of March, usual weekly hours as of March, and hourly 

wage rate (if employed) as of March. Xjst includes state dummies, year dummies, and variables 

describing the individual's education, age, race, and family situation. E-^ is a zero one indicator 

for whether the individual was employed during the calendar year preceding the March interview. 

OCCjst.! is a vector of zero-one dummies for whether the individual's longest job during the 

preceding year was hi a particular occupational classification. INDjst is a vector of zero one 

dummies for whether the individual longest job during the preceding year was in a particular 

industrial classification. W^ is the natural logarithm of the individual's calculated hourly wage 

rate during the preceding year. Hj^ is the usual weekly hours the individual worked during the 

preceding year. Ujst is the disturbance term.

As the above discussion implies, the model includes all single mothers on welfare during 

the preceding year, including those who never held a job. This allows the estimates of the effects 

of working in particular occupations or industries, or at jobs that offer particular wage rates or 

weekly hours, with the effect of simply working at an average job. In addition, including the full 

sample increase the precision in estimating the effects of control variables.

The vector of occupation dummies, or the vector of industry dummies, each sum up to the 

dummy variable for whether the individual worked the preceding year. Each individual who works
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must work at some occupation and industry. Estimation requires some restriction. The usual

restriction is to drop one industry and one occupation from estimation. The coefficients on the 

excluded industry and occupation are implicitly set equal to zero. The estimated effects of 

included industries and occupations then represent effects compared to the excluded industry and 

occupation. This paper's empirical work uses two alternate restrictions that yield coefficient 

estimates with more meaningful interpretations. 3 One restriction sets the weighted sum of all the 

occupation coefficients to zero, where the weights are the proportion of those working hi the 

sample who are employed in each occupational classification. The analogous restriction is also 

used for the industrial coefficients. Using these restrictions, the estimated coefficient on each 

occupation measures the effects of being employed in that occupation, compared to being 

employed hi the "average occupation." A person employed in this average occupation would be 

partially employed hi each occupation, with the amount of their partial employment hi each 

occupation equal to the sample proportion in each occupation. A similar interpretation applies to 

the coefficients for each industry. Because of these restrictions, the coefficient on the dummy 

variable for whether the person worked last year also has a more meaningful interpretation. This 

coefficient is the effect of working last year for a mythical average person who was employed hi 

the "average" occupation and industry. In addition, in the actual estimation the wage variables 

and hours variables are measured as deviations of the original variables from the sample averages 

of these variables. This means that the effects of the "worked" dummy can also be interpreting 

as working at the job that offers "average" wages and "average" usual hours. 4

3These restrictions are suggested by papers by Suits (1984) and Kennedy (1985). These restrictions are not 
substantive.
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For the full sample, the dependent variable is a zero-one dummy for whether the individual

is employed in March. This model is estimated using probit, which assumes a normal distribution 

of the disturbance term. A simpler model to use would have been a linear probability model. But 

the linear probability model ignores the discrete character of the dependent variable. Linear 

probability models have been shown to be particularly inappropriate when many of the 

independent variables of interest are also discrete variables (the worked variable, the occupation 

and industry dummies) (Maddala, 1983; Greene, 1993). An alternative to probit is logit, but 

researchers usually find little substantive differences between probit and logit. In addition, a probit 

model is more consistent with the estimation strategies used for the other dependent variables, 

which assume a normal distribution of the disturbance.

For one-fourth of the sample, the so-called "Outgoing Rotation Group" of the CPS, 

information is available on their usual weekly earnings and usual weekly hours. This allows the 

calculation of a wage rate for those with positive usual weekly hours. Models were also estimated 

with three other dependent variables: March values of usual weekly earnings, usual weekly hours, 

and the natural logarithm of the wage rate. For the usual weekly earnings and usual weekly hours, 

estimation was done using a tobit regression model. The tobit regression model allows for the 

truncation of the earnings and hours dependent variables at zero, and assumes a normal 

distribution of the disturbance term.

For the wage rate model, estimation should take account of the selection of the sample for 

the wage rate model: only those working as of March are included. For this model, I used the

4Note also that the wage variable is defined as equal to zero for those not working at all last year. This 
definition is not substantive; the worked dummy coefficient will simply measure the effect of working and having a 
defined average wage rather than no measured wage.
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standard "heckit" or Heckman two-stage censored regression model (Greene, 1993). This model

requires specifying a probit model for the probability of working. The second-stage regression 

model, with the wage rate dependent variable, is "corrected" for selection bias by including an 

additional regressor that reflects the probability of working for each observation, derived from 

the probit model (the "Mill's ratio"). Heckit models can be estimated more accurately if some 

variables that are hi the probit model are excluded from the second-stage regression equation. I 

use the standard exclusion that the number of children of the mother is assumed to affect the 

probability of working, but not the wage rate if working.

No attempt is made to correct for endogeneity of the occupation, industry, and other 

characteristics of the individual's job last year. Presumably, even though the model controls for 

numerous observed individual characteristics, there will be some correlation between unobserved 

characteristics of individuals in the disturbance terms and the various job characteristics. 

Unobserved characteristics may lead to individuals choosing certain types of jobs, or being chosen 

by employers for certain types of jobs.

This endogeneity limits the interpretation that can be given to the "effects" of last year's 

job characteristics on March labor market outcomes. The estimates cannot be interpreted as the 

pure effects of job characteristics. The estimates can be said to have some unknown bias if viewed 

as attempts to estimate these pure effects. Rather, the estimates reflect both effects of the job 

characteristics, and effects of the types of people who tend to be employed hi jobs with those 

characteristics.

Although knowing whether the job itself matters is important for policy, knowing that 

some combination of the job and personal characteristics associated with the job is still useful for
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welfare-to-work policymakers. If certain types of jobs are associated with short-term labor market 

success, then welfare-to-work policymakers still might want to target those types of jobs for their 

client. However, welfare-to-work policymakers in this case would need to make sure that clients 

placed hi jobs have the tangible and intangible characteristics needed for success in that type of 

job. Just being placed hi the job may not be enough.

More on data selection and description

The data are selected from 13 March Current Population Survey data tapes, from March 

1983 to March 1995. The data selection began with 1983 because there were big changes hi the 

occupational classifications used in the Current Population Survey from 1982 to 1983; reconciling 

the old and new system is difficult. 5

Individuals were selected for the estimation sample if they were a female family head, 

ages 16 to 64, were on some kind of public assistance hi the previous year, were unmarried or 

married with spouse absent, and had at least one child 17 years old or younger. In addition, 

sample selection required that earnings and weeks worked in the previous year not be "allocated" 

(i.e., made up by the Census bureau because the individual did not answer that question), and 

March employment status not be allocated. Furthermore, I dropped observations where last year's 

average hourly wage seemed implausible. This average hourly wage was calculated as last year's 

real earnings divided by the product of weeks worked and usual weekly hours (i.e., an imputed 

value for annual work hours). Specifically, observations were dropped if the individual worked

5 There were also minor changes in the occupational and industrial classification systems used in the CPS 
from 1991 to 1992. But it is relatively easy hi this case to reconcile the old and new systems, at the cost of a very 
slight aggregation of relatively few occupational and industrial categories.
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last year, but the calculated real wage last year was less than $1 per hour (in 1995 dollars), or the

calculated real wage was greater than $50 and imputed annual hours were less than 500.

Finally, for the estimation involving March's weekly earnings, hourly wage rate, and 

weekly hours, observations were dropped from estimation if March weekly earnings was 

allocated, or if the hourly wage rate seemed implausible. The March hourly wage rate was 

assumed to be implausible if it was less than $1.50. The highest observed real wage in March was 

$36.42, so no observations were dropped because March wages were "too high."

Table 3 presents means and standard deviations for most of the variables used in the 

empirical work. (Occupation and industry definitions will be discussed in a later section). These 

numbers give a good picture of the sample. The sample is young, averaging 30 years of age. 

Education levels are generally low. Forty-five percent are high school dropouts, and fewer than 

two percent have a college degree. The sample is more heavily minority than the general 

population, but still includes significant number of whites: 36 percent non-Hispanic white, 36 

percent black, 24 percent Hispanic, and four percent of other races. The number of children 

present is not large, around two on average, with one under age six. About 3/4ths of the sample 

live in a metropolitan area, slightly above the U.S. average. About 30 percent of the sample 

worked at some time during the preceding year. The natural logarithm of the hourly wage rate at 

those jobs averaged 1.64, or about $5.14 per hour, and usual weekly hours at those jobs averaged 

around 31 hours. There was a great deal of variation hi hourly wage rates, with a standard 

deviation of about 57 percent. The percentage employed in March was around 18 percent. Forty-
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Table 3
Descriptive Statistics on Variables Used in Research 

(Omitting Occupation and Industry Dummies)

Variable Mean Standard Deviation

Control Variables:

Age

0 years of schooling (0-1 variable)

1-8 years of schooling (0-1 variable)

9-11 years of schooling (0-1 variable)

1+ college years, no degree (0-1 variable)

4 years of college, degree (0-1 variable)

Post-graduate degree (0-1 variable)

Black (0-1 variable)

Hispanic (0-1 variable)

Other non-white race (0-1 variable)

Number of own children, ages 0-5

Number of own children, ages 6-17

MS A residence (0-1 variable)

Worked last year (0-1 variable)

ln(real wage rate per hour last year 1995 dollars)= 
ln[ real earnings/(weeks worked*usual weekly hours)]

Usual weekly work hours last year

Dependent Variables:

Employed in March (0-1 variable)

Employed in March, for those who worked last year

Usual weekly earnings hi March 
(includes zero March earnings)

Usual weekly earnings in March, 
for those who worked last year

Usual weekly work hours in March 
(includes zero March hours)

Usual weekly hours in March, 
for those who worked last year

In (real wage rate in March)

In (real wage rate in March), 
for those who worked last year

30.4

0.006

0.135

0.318

0.159

0.013

0.002

0.355

0.235

0.037

0.91

1.18

0.758

0.304

1.637 (Based on 6,338
observations) 

[exp(1.637)=5.14]

31.5 (Based on 6,338
observations, those who

worked last year)

0.178

0.478 (6,338 observations) 

$30.61 (4,998 observations)

$90.98 (1,426 observations) 

4.60 (4,999 observations) 

13.51 (1,425 observations)

1.796 (759 observations) 
[exp(1.796)=$6.03]

1.807 (634 observations) 
[exp(1.807)=$6.09]

8.1

0.89

1.17

0.571

12.0

$87.94 

$133.48 

11.75 

16.89 

0.384 

0.384

Notes: Except where indicated, all descriptive statistics are based on 20,830 observations. Control variables also 
included: age squared, complete vectors of state of residence and year dummies, and occupation and industry 
dummies. Size of firm where employed last year also tested in some specifications. Omitted category in education 
variables is "high school graduate only." Omitted category in race variables is "non-Hispanic white." Last year's real 
wage and work hour variables were actually entered hi regression as deviations of original variables from mean 
values.
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eight percent of those who worked last year were also employed in March, and about five percent 

of those who did not work last year were employed in March. Even without doing any formal 

estimation, it seems fairly clear that being employed last year has an extremely strong relationship 

to whether the individual is working in March.

For those employed in March, average real hourly wages were about 16 percent higher 

than for those employed last year, or a natural log of 1.80, corresponding to a real hourly wage 

rate of $6.03. This makes sense because we are selecting a sample that is especially "down on its 

luck" hi the preceding year.

Occupation and industry categories

One key issue is how to define the occupation and industry classifications used in the 

analysis. As Table 1 revealed, welfare recipients have fairly large representation hi some 

relatively detailed occupations and industries. On the other hand, there are some larger 

occupational and industrial categories in which welfare recipients are seldom represented. 6 For 

research purposes, we would like to use as detailed categories of occupations and industries as 

possible, but with a sufficient sample size for each category to allow precise estimation. For some 

occupations and industries, we clearly have a large enough sample to justify going to 3-digit level. 

In other cases, the occupational and industrial categories must be fairly aggregate to allow for 

reasonably precise estimation. Finally, the procedures used for categorizing industries and 

occupations must be reasonably "objective." If too much subjective judgment by the researcher

6The Appendix presents tables that show occupational and industrial distributions of welfare recipients in this 
study's sample, using the "standard" Census occupation and industry categories, at the 1-digit and 2-digit levels of 
detail.
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is involved, some readers might get suspicious that the categories have been picked to reach a

predetermined result.

I decided to come up with a set of fairly mechanical rules for aggregating and 

disaggregating occupations and industries based on the percentage of the sample in the resulting 

categories. The procedure went as follows. I start with all occupations (industries) combined. The 

procedure at the first stage attempts to disaggregate to the "major occupation (industry) group" 

level, at the second stage to the "detailed occupation (industry) recede" level, and at a third stage 

to the 3-digit level. (The major group level, recode level, and 3-digit level are all classifications 

defined by the Census Bureau, with the major group being the broadest classifications and the 3- 

digit level the most detailed.) At each stage, I picked out all individual occupations (industries) 

if they were greater than some cutoff percentage, say x percent. The remaining occupations 

(industries) within that broader category (all occupations/industries in going to the first stage, the 

major group in the second stage, the recode category in the second stage) were then combined. 

If these remaining occupations (industries) summed to greater than x percent of the total sample, 

then this categorization was accepted as an intermediate possible categorization. If the remaining 

occupations (industries) within that broader category did not sum to more than x percent, then one 

of three options was chosen. Option 1 was not to break down the broader category at all. Option 

2 was to group the remaining occupations (industries) with whichever one of the more detailed 

categories hi that broad category those remaining occupations (industries) seemed to be most 

similar. Option 3 was to group the remaining occupations (industries) in a broad miscellaneous 

category. Which of these three options was chosen was based on my judgment about which option 

would minimize differences within categories and maximize differences across categories. In the
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groupings actually used, I have tried to describe fully all the subjective judgments made. After

performing this procedure at the first stage, I then went on to the second-stage, and then to the 

third stage. The resulting occupation and industry categories disaggregate to a more detailed level 

the more welfare recipients are employed in a given type of occupation or industry. All 

occupational and industrial categories used, by construction, end up having more than x percent 

of the total sample.

This procedure was applied for two different "cutoff levels" of x: 10 percent and 2.5 

percent. 7 Tables 4 and 5 show the resulting occupational and industrial categories, and gives some 

descriptive statistics for these categories. In the empirical section of the paper, the 2.5 percent 

categories are used in the reported estimates with the March employment dependent variable. The 

10 percent categories are used in the reported estimates with the earnings, hours, and wage rate 

dependent variables, for which only a much smaller sample is available.

7The choice of 10 percent and 2.5 percent as cutoffs was based on a rough preliminary calculation of likely 
standard errors on the resulting industry and occupation dummies. If we just did a regression using those employed 
last year, with a dummy dependent variable for whether employed in March as a dependent variable, and a single 
discrete independent variable, the standard error of the coefficient on that discrete variable would be equal to the 
standard deviation of the March employment discrete variable, divided by the standard deviation of the single discrete 
independent variable, multiplied by one over the square root of the sample size (the number of those employed last 
year). As we add other independent variables, the standard error on any independent variable will be given by a 
similar calculation, except now the standard deviations of both dependent and independent variables should be the 
standard deviation after adjusting for all the other independent variables. That is, the standard deviations in the 
calculation should be for the residuals from regressing both the dependent and independent variable considered on all 
the other independent variables. Absent information to the contrary, it is not unreasonable to think that the ratio of 
the adjusted standard deviations will be of similar size to the ratio of the unadjusted standard deviations. Using 
unadjusted standard deviations, and the sample size, the predicted standard error in these data with a discrete industry 
or occupation dummy with a mean of .10 is .021, or about 2 percent. For a discrete industry or occupation dummy 
with a mean of .025, the predicted standard error is .040, or about 4 percent. Going to more detailed industry or 
occupation dummies that have means closer to 1 percent would push standard errors up to around .063. Based on these 
calculations, 2.5 percent seemed about the minimal amount of employment in an industry or occupation needed to tell 
anything useful. At this detail level, we can determine industry or occupation effects with an accuracy of about plus 
or minus 8 percent in the effects of the industry or occupation on the March employment percentage. Although these 
calculations are crude, the actual standard errors were reasonably close to these predicted levels.
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Tables 4 and 5 show large differences in March employment probabilities for welfare

recipients, depending in which occupation or industry she was employed in last year. There also 

are some significant differences across occupations and industries in wage rates, however, and it 

is certainly possible that wage differences could explain any occupation or industry differences 

in March employment probabilities. In addition, Tables 4 and 5 reveal both similarities and 

diversity in the types of jobs obtained by welfare recipients. The jobs generally are low-wage, 

with low formal education requirements. Most of the jobs involve considerable interaction with 

customers and co-workers. On the other hand, the specific tasks required vary greatly across these 

occupations and industries.

Firm Size

For six of the CPS data tapes (1988-89, 1992-95), information is available on the size of 

the firm of the individual's longest job last year. Firm size might affect job retention and earnings 

growth for welfare recipients. Small and large firms, even in the same industry and for the same 

occupation, would have different production processes and personnel policies.

Some specifications included firm size, described by a complete set of dummies for 

different firm size categories. Table 6 gives descriptive statistics for the distribution of welfare 

recipients by size class of firm.

4. Results

Table 7 presents results for a probit model with a zero-one indicator for March 

employment as a dependent variable. The reported model includes the complete set of control



Table 4 
Occupation Categories Used in Analysis

10% 2.5% 
Category Name Category Name

All those employed last
year

Sales
Cashiers
Other sales

Administrative support
Secretaries

Other admin, 
support

Food services

Waitresses

Cooks

Other food service

Other services

Occupation 
codes included

243-285

276

243-285, 
except 276

303-389

313-315

303-389, 
except 313-315

433-444

435

436

433-444, 
except 435, 

436

445-469

Relation to 
Census categories

Major occ group

3-digit occ

Major occ group 
minus 3-digit occ

Major occ group

Sum of 3 3- digit 
occupations

Major occ group 
minus 3 occupations

Detailed recede
group

3-digit occ

3-digit occ

Recede minus 2 
occs

Sum of 3 Detailed

Examples of occupations

Cashiers

Sales workers, other 
commodities; Street and 
door-to-door sales; 
supervisors and proprietors, 
sales occupations

Secretaries; typists; 
stenographers

Receptionists; general office 
clerks; bookkeepers; teacher 
aides; data entry keyers; file 
clerks; stock clerks.

Waitresses

Cooks

Bartenders; food counter and 
fountain; kitchen workers

% of sample

100%

14.8

10.2

4.6

16.6

4.1

12.5

16.6

6.5
4.1

6.1

20.8

Mean real wage 
in sample

$6.12

$5.74

$5.58

$6.09

$6.85

$7.06

$6.78

$5.33

$5.41

$5.01

$5.46

$6.02

Mean March 
employment 
probability

.478

.438

.414

.490

.526

.542

.520

.457

.468

.405

.479

.491

Health aides 445-447

recode groups 

Sum of 3 3-digit
occs

Nursing aides; dental 
assistants

7.9 $6.57 .508



Table 4
(Continued)

10% 
Category Name

Machine operators/ 
inspectors

Miscellaneous

2.5% 
Category Name

Maids

Cleaning

Child care

Other personal 
service

Machine operators

Assemblers/ 
inspectors

Professional

Occupation 
codes included

449

453, 448

466

450-469, 
except 453, 

466

703-799

703-779

783-799

All other not hi 
above

43-199

Relation to 
Census categories

3-digit occ

Sum of 2 3-digit 
occs

3-digit occ

3 Recede groups 
minus some 3-digit 
occs.

1 Major occ group

Recode group

2 Recode groups

Major occ group

Examples of occupations

Maids

Janitors; supervisors, 
cleaning services

Child care

Welfare aides; hairdressers

Textile sewing machine 
operator; packaging machine 
operator; laundering & dry 
cleaning machine operator; 
pressing machine operator

Assemblers; production 
inspectors

Social workers; teachers,

% of sample

4.3

4.0

1.8

2.8

10.3

6.6

3.7

20.8

3.4

Mean real wage 
in sample

$5.31

$5.85

$5.26

$6.25

$5.88

$5.84

$5.96

$6.67

$7.33

Mean March 
employment 
probability

.452

.464

.496

.533

.452

.468

.422

.488

.620

Private household 
service

403-407 Major occ group

pre-K and K; teachers, 
elem.; R.N.; teachers, 
secondary schools; post 
secondary teachers

Private HH cleaners & 
servants; child care workers, 
private HH

3.5 $5.92 .438



Table 4 
(Continued)

10%
Category Name

2.5% 
Category Name

Occupation 
codes included

Relation to 
Census categories Examples of occupations % of sample

r i 11 1 n *+

Mean real wage 
in sample

Mean March 
employment 
probability

Handlers/ laborers

Misc.

864-889 Major occ group

All other not in 
above

Hand packers and packagers; 
laborers, except 
construction; stock handlers 
& baggers

Farm workers; managers 
and administrators; bus 
drivers; butchers and meat 
cutters; truck drivers; 
grounds keepers; chemical 
lab technicians; guards & 
police, except public svc.; 
LPNs.

3.7

10.3

$5.78

$7.03

.319

.521

Notes on occupational table: Occupation codes reported are official Census Bureau occupational codes, as summarized in documentation for March 1995 CPS. Some minor 
aggregations to a few 3-digit categories were made to reconcile the 1983-91 and 1992-95 occupational categories, which are slightly different (see Appendix). Major occupational 
group, occupation recodes, and 3-digit occupations are the three levels of detail (with detail going from 14 major occupations to 52 occupation recedes to 500 3-digit occupations). 
The specific 3-digit occupations listed as examples hi the fifth column are listed in order of percentage of this sample employed in each occupation. The occupations listed as 
examples in all cases sum to more than 50 percent of the corresponding category. All descriptive statistics listed are for the full sample used hi the regressions with an employment 
status in March dependent variable, and are based on a sample of 6,338 employed welfare recipients last year. All descriptive statistics listed are unweighted, as it is unclear 
whether the CPS-provided weights are appropriate hi a sample that drops many observations with allocated variables or implausible wage rates. The procedure to create these two 
systems of classification is as described hi the text. The 10 percent classification required no judgements about regrouping occupations, but could be done simply mechanically. 
The 2.5 percent classification required the following specific judgements about regrouping occupations: sales representative was grouped hi with other sales to form other sales 
category, rather than being grouped with cashiers, hi order to preserve separate cashiers category, as cashiers is biggest 3-digit occupation; for administrative support, computer 
operators and records processing were grouped with other administrative support, and stenographers and typists in with secretaries. For cleaning, because cleaning supervisors 
category was very small, I grouped it together with janitors in a somewhat broader category. Finally, child care ends up being a separate category because this classification 
procedure was originally done before observations were dropped for having implausible wages last year. In this original breakdown, child care occupations were greater than 2.5 
percent of the sample. As it turned out, child care occupations have a disproportionate number of implausible, usually very low wages, and this occupational category dropped 
to only 1.8 percent of the final sample. It was kept as a separate category in the belief that there is special interest hi seeing whether child care, which clearly has much in common 
with the usual home activities of welfare recipients, leads to greater employment retention.



Table 5 
Industrial Categories Used in Analysis

10% 
Category Name

All industries

Eating & drinking 
places

Rest of retail trade

Personal service/ 
private household 
service

Health services

2.5% 
Category Name

Eating & drinking 
places

Grocery stores

Department stores

Rest of retail trade

Hotels/ motels

Rest of personal 
service

Private household 
service

Hospitals

Nursing and 
personal care 
facilities

Industry codes 
included

641

590-691, except 
641

601

591

590-691, except 
641,601,591

761-791

762

770-791

761

812-840

831

832

Relation to Census 
categories

3-digit industry

Major industry minus 
3-digit industry

3-digit industry

3-digit industry

Major industry minus 
3 3-digit industries

Major industry group

3-digit industry

Recede group minus 
3-digit industry

3-digit industry; also 
recede group

2 Recede groups

3-digit industry; also 
recede group

3-digit industry

Examples of industries

Eating and drinking places

Grocery stores

Department stores

Apparel accessory stores, 
except shoe; retail bakeries; 
gasoline service; drug stores; 
direct sales; variety stores; 
sporting goods; auto and home 
supply

Hotels/motels

Laundry, cleaning, and 
garment services; beauty 
shops

Private household services

Hospitals

Nursing and personal care 
facilities

% of sample

100%

16.8

13.9

3.9

3.2

6.8

10.7

4.2

2.6

4.0

11.6

2.9

5.8

Mean real wage 
last year

$6.12

$5.21

$5.82

$5.79

$5.80

$5.85

$5.70

$5.49

$5.64

$5.96

$7.08

$8.24

$6.39

Mean March 
employment 
probability

.478

.434

.448

.478

.446

.432

.461

.455

.530

.422

.552

.640

.497



Table 5 
(Continued)

10% 
Category Name

Prof, social, &
educ. services

Manufacturing

Misc.

2.5% 
Category Name

Other medical
services

Educational services

Social services,
other prof, services

Durable goods

Nondurable goods

FIRE (finance/
insurance/ real
estate)

Industry codes Relation to Census 
included categories

812-830, 840 Recede group minus
3-digit industry

841-893 3 Recode groups

842-860 Recode group

841, 861-893 2 Recode groups

100-392 2 Major industry
groups

230-392 Major industry group

100-222 Major industry group

All other than
listed above

700-712 Major industry group

Examples of industries

Health services n.e.c.; offices
of physicians; offices of
dentists

Elementary and secondary
schools

Child day care services; social
services, n.e.c.; membership
organizations; residential care
facilities; research,
development & testing

Electrical machinery and
equipment; motor vehicles;
furniture; misc. fabricated
metal products; medical and
dental instruments; machinery,
except electrical.

Apparel, except knit; meat
products; canned, frozen and
preserved fruits and
vegetables; printing;
miscellaneous food
preparations; misc. plastic
products

Real estate, incl. real estate
insurance ofcs; insurance;
banking

Mean real wage 
% of sample last year

2.9 $7.27

12.5 $6.33

5.9 $6.47

6.6 $6.20

12.3 $6.24

4.3 $6.64

8.0 $6.03

22.2 $6.53

2.8 $7.02

Mean March 
employment 
probability

.574

.563

.637

.495

.479

.529

.451

.453

.601



10% 2.5% 
Category Name Category Name

Personnel supply
services

Rest of business/
repair services

Public admin.

Misc.

Industry codes 
included

731

721-760, except
731

900-991

All other than
listed above

Relation to Census 
categories

3-digit industry

Major industry group
minus 3-digit industry

Major industry group

Examples of industries

Personnel supply services

Services to buildings; business
services.

Admin, of human resource
programs; justice, public
order, & safety; general
government, n.e.c.

Misc. entertainment and
recreation services;
agricultural production;
construction; bus service;
groceries and related products;
veterinary services; trucking
services

Mean real wage 
% of sample last year

3.0 $5.58

4.5 $5.84

2.9 $8.20

9.0 $6.29

Mean March 
employment 
probability

.337

.468

.484

.427

Notes on industrial table: Industry codes reported are official Census Bureau industrial codes, as summarized in documentation for March 1995 CPS. Some minor aggregations 
to a few 3-digit categories were made to reconcile the 1983-91 and 1992-95 industrial categories, which are slightly different (see Appendix). Major industrial group, industry 
recedes, and 3-digit industries are the three levels of detail (with detail going from 14 major industries to 46 industry recedes to 236 3-digit industries). The specific 3-digit industries 
Listed as examples in the fifth column are listed in order of percentage of this sample employed in each industry. The industries listed as examples in all cases sum to more than 
50 percent of the corresponding category. All descriptive statistics listed are for the full sample used in the regressions with an employment status in March dependent variable, 
and are based on a sample of 6,338 employed welfare recipients last year. All descriptive statistics listed are unweighted, as it is unclear whether the CPS-provided weights are 
appropriate in a sample that drops many observations with allocated variables or implausible wage rates. The procedure to create these two systems of classification is as described 
in the text. The specific judgement calls for the 10 percent classification are as follows: health services was grouped together even thought this was two recedes; manufacturing 
was grouped together even though this was two major groups. The specific judgement calls for the 2.5 percent classification are as follows: repair services was combined with 
business services, except personnel supply services, to get an "all other business services" category, rather than being placed in miscellaneous category or being grouped with 
personnel supply services, in order to preserve the distinctive personnel supply services category; other professional services were combined with social services largely on grounds 
that these are both very diverse categories compared with educational services category.
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Table 6 
Distribution of Employed Welfare Recipients By Size Class of Firm

Percentage of welfare recipients 
Size class of firm employed in that size class of firm

Less than 25 employees 29.4%

25-99 employees 15.3

100-499 employees 15.9

500-999 employees 5.7

1000 or more employees________ _________________33.7_________ ___

Notes: Sample size is 3,277 employed welfare recipients, from following March CPS tapes: 1988-89, 1992-95.

variables listed in Table 3. The model also includes a complete set of both occupation and industry 

dummies, defined using the 2.5 percent classifications. The reported model does not include 

dummy variables for size of firm employing the individual last year.

The reported model is one of eight estimated with a March employment status dependent 

variables. Models were estimated using both the 10 percent and 2.5 percent classifications, and 

with either occupation dummies separately, industry dummies separately, or both industry and 

occupation dummies. In addition, two models were estimated that added the firm size dummies 

to the 10 percent and 2.5 percent models with both occupation and industry dummies.

Why was the particular model hi Table 7 chosen to be reported out of the eight models 

estimated? Both industry and occupation effects on March employment are potentially of policy 

interest. Furthermore, we would like to know what the effects of industry of employment last 

year, holding occupation constant, and vice versa. We would like if possible to get the maximum 

amount of detailed information on industry and occupation effects; the 2.5 percent classification 

gives reasonably precise results.
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Table 7
Effects of Last Year's Work Activity and Various Job Characteristics

on Probability of Employment this March, For Single Mothers
Receiving Welfare Last Year

Variable Effect on March Employment Probability
Worked last year (0-1 variable) 

Average wage rate last year 

Usual weekly hours last year

0.421 (60.23) 

0.0517 (4.37) 

-0.00049 (-0.84)
Industry categories (0-1 variables):
Miscellaneous
Durable goods
Nondurable goods
Eating and drinking places
Grocery stores
Department stores
Rest of retail trade
FIRE (finance/insurance/real estate)
Personnel supply services
Rest of business/repair services
Hotels/motels
Rest of personal services
Private household services
Nursing, personal care
Other medical services
Educational services
Social svcs/other personal svcs
Hospitals
Public administration

-0.053*

0.076*
0.011

-0.022
0.051
0.006

-0.025
0.088*

-0.128*

-0.000
-0.003
0.030

-0.174
0.017
0.048
0.118*

-0.014
0.135*

-0.021

-2.36
(2.12)
(0.38)

(-0-91)
(1.39)
(0.16)

(-0.91)
(2.21)

(-3.29)
(-0.00)
(-0.06)
(0.70)

(-1.96)
(0.47)
(1.18)
(4.12)

(-0.50)
(3.45)

(-0.55)

Occupation categories (0-1 variables:
Miscellaneous
Professional
Cashiers
Other sales
Secretaries
Other administrative support
Private household services
Waitresses
Cooks
Other food service
Health aides
Maids
Cleaning
Child care
Other personal services
Machine operators
Assemblers, inspectors
Handlers, laborers

0.026
0.049

-0.052*

0.008
0.030
0.005
0.155

-0.000
-0.063
0.007
0.025

-0.008
-0.014
0.020
0.051

-0.002
-0.058
-0.135*

(1.22)
(1.30)

(-2.09)
(0.24)
(0.89)
(0.27)
(1-59)

(-0.01)
(-1.75)
(0.25)
(0.77)

(-0.18)
(-0.39)
(0.40)
(1.21)

(-0.07)
(-1.49)
(-3.88)

Notes: Numbers in parentheses are ratios of underlying estimates to standard errors; underlying estimates should 
asymptotically be distributed normally. Estimated effects with ratios of coefficients to standard errors of greater than 
2 hi absolute value are marked with asterisk. Estimates are derived from probit specification, with 0-1 dependent 
variable for whether the individual is employed hi March. Sample is all single mothers who were on welfare previous 
year, from March Current Population Survey, 1983-95. Control variables include: age, age squared, six 0-1 variables 
for years of education, three 0-1 variables for race, two variables for number of own children of various ages, 0-1 
variable for whether resided hi metropolitan area, complete vector of 0-1 variables for state of residence, complete 
vector of 0-1 variables for year of observation. Effects in table for 0-1 variables are change hi probability of March 
employment, for discrete change in variable from 0 to 1, evaluated using March employment probability of .478 as 
baseline, which is mean March employment probability for those employed last year. For "worked last year" 
variable, change from 0 to 1 is evaluated, but ending up at .478 employment probability. Occupation and industry 
variables each together sum to worked last year variable. Restrictions are imposed to make these occupation and 
industry coefficients estimable. Specifically, weighted sum of occupation variable coefficients is constrained to equal 
zero, where weights are proportion of sample in each occupation. Similar restriction is imposed on industry 
coefficients. Hence, occupation and industry effects are effects of that occupation or industry relative to mythical 
"average" occupation or industry, in which an imaginary individual was partially hi each occupation or industry, with 
partial employment weights equal to sample averages. Estimation also defines average wage rate last year and usual 
weekly hours last year variables as deviations from sample averages. Hence, the effect of worked last year should 
be interpreted as effects for individual in average occupation and industry, and being paid average wages and working 
average work hours. Effects hi table for wage and usual weekly hour variables are marginal effects evaluated at 
March employment probability of .478.
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From a formal statistical perspective, one could argue for a variety of models. Chi-squared

tests indicate that the greater industry and occupational detail of the 2.5 percent occupation/ 

industry model was significantly better than the 10 percent occupation/industry model. 8 Chi- 

squared tests also indicate that the occupation and industry dummies in the reported model are 

each separately statistically significant. 9 Other statistical criteria yield other model choices. The 

Akaike Information Criterion, which seeks to choose a model that minimizes out-of-sample 

prediction error, prefers the 2.5 percent industry-only model out of the models estimated. 10 The 

Schwartz Bayesian Criterion, which seeks to choose a model that minimizes the posterior odds 

of choosing the wrong coefficients, prefers the 10 percent industry-only model out of the models 

estimated. 11 However, these criteria do not address the issue of the policy interest in learning more 

about the effects of both occupation and industry, at as fine a level of detail as possible.

Finn size was dropped from the reported models. When firm size is added, the vector of 

firm size variables is clearly statistically insignificant. 12 Furthermore, the point estimates imply 

effects of firm size that are substantively small. 13 Finally, including the firm size variables implies

value of the chi-squared test statistic, with 24 degrees of freedom, is 72.92, which has a probability of 
less than .005.

9Chi-squared for industry dummies is 67.70, probability less than 0.0001. Chi-squared for occupation 
dummies is 29.49, probability =.0303.

10The six models and their values of the AIC, which we want the maximum value of, are: OI 2.5 percent:
-6893.4; OI 10 percent: -6905.9; 12.5 percent: -6891.3; I 10 percent: -6902.3; O 2.5 percent: -6909.7; O 10 percent:
-6915.3. The I 2.5 percent is the "best" AIC model, but the OI 2.5 percent model is a relatively close second.

nThe values of the Schwartz Bayesian Criterion for the six models are: OI 2.5 percent:-7346.2; OI 10 
percent: -7263.4; I 2.5 percent: -7276.58; I 10 percent: -7239.9; O 2.5 percent: -7291; O 10 percent: -7248.9. The 
I 10 percent model is clearly preferred.

12In the 2.5 percent occ/ind model, the chi-squared test statistic for adding the size variables is 0.25, which 
has a probability of 0.9930.
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that we must drop slightly over half the observations, as firm size is only available for six of the

thirteen CPS tapes included in this study. Reducing observations so much seems an excessive 

price to pay for adding variables that seem to have little effect.

As shown in Table 7, if a welfare mother worked last year, her probability of employment 

in March increases from six percent to 48 percent. The wage rate of last year's job had highly 

statically significant effects, but of more modest magnitude than might be expected. A doubling 

of the wage rate say from $5/hour to $10/hour would only increase the percentage employed 

the next March by around 3.6 percent, from 47.8 percent to 51.4 percent. 14 The individual wage 

rate is no doubt subject to considerable measurement error, which will bias its coefficient towards 

zero. But it seems unlikely for there to be enough measurement error for the effect of wages on 

March employment probabilities to be impressively large. The effect of usual weekly hours at last 

year's job is not only substantively small, but also statistically insignificant.

The effects on March employment of the industry of last year's job are generally greater 

than the effects of the occupation of last year's job. The industry variables are collectively more 

statistically significant than the occupation variables. Furthermore, there are more industry effects 

that have effects that are substantively large in absolute value. Job retention for welfare recipients

13In the 2.5 percent occ/ind model, the following are the estimated marginal effects and standard errors: size 
It 25: .006 (t=0.31); size 25-99: -.007(t=-0.25); size 100-499: -.004 (t=-0.14); size 500-999:.013 (t=0.31). The 
omitted category is size 1000 and above. These marginal effects are calculated by multiplying the probit coefficients 
by .478, and so are only approximate calculations for the discrete effects of a change to a different size class, 
calculated at the mean March employment probability for those working last year of .478.

14A doubling of the wage rate would increase the natural logarithm of the wage rate by ln(2) =.693. The 
numbers in the table show the marginal effect of increasing the wage rate, evaluated for an individual whose original 
probability of being employed in March is at the sample mean for those employed last year of .478. Multiplying the 
reported marginal effect of .0517 times .693 = .0358, which will be an approximation to the actual discrete effect 
of increasing the wage rate by that discrete amount.
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is affected more by an industry's personnel practices, rather than by differences in personnel

practices for different types of jobs within the same industry.

The industries with the largest positive, and statistically significant, effects on March 

employment probabilities are (in order of magnitude of effect): hospitals; educational services; 

finance/insurance/real estate; durable goods manufacturing. The temporary help industry has the 

most negative effects on March employment probabilities.

The magnitude of these industry effects is quite large relative to the effects of wages. A 

number of industries increase or reduce March employment probabilities by over .07. Hospital 

industry employment last year increases the March employment probability by .135, from .478 

to .613. It would take an increase in the wage rate of around thirteen fold to increase March 

employment probabilities by a similar amount. It should be recalled also that these industrial 

effects are estimated controlling for individual wages on last year's job. It seems unlikely that 

these industrial effects could be attributable to wages.

Fewer of the occupation effects are large, once one controls for industry and wages. The 

only two statistically significant occupation effects are for cashiers and handlers/laborers. Both 

occupations are estimated to significantly the reduce March employment probability compared to 

the average industry.

Any job last year must be in a particular industry and occupation, by definition. All 

industrial/occupational combinations are not equally likely, and in many cases a worker's industry 

and occupation are highly correlated. To take an extreme example, all workers in the private 

household service occupation are also in the private household service industry, and 87 percent 

of those in the private household service industry are also in the private household service
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occupation. The effects reported in Table 7, which show the effects for someone in a particular

industry (occupation), compared to the average industry (occupation), for someone who is in the 

"average" occupation (industry), may sometimes be misleading. One should pay some attention 

to the industry/occupation pairs that are most likely to occur. The effects of any industry/ 

occupation pair can be calculated by adding up the industry/occupation coefficients. Calculating 

the standard error of that combination requires knowing the variance/covariance matrix of the 

coefficients. 15

Of the 342 possible industry/occupation pairs (18 occupations times 19 industries), Table 

8 reports estimated effects and ratios to standard errors for each and every pair that has more than 

one percent of the sample. Together, these 26 industry/occupation pairs comprise over 60 percent 

of the sample. As Table 8 shows, the estimates imply significantly negative effects on employment 

of being a cook or cashier in eating and drinking places. Being a cashier in the rest of retail trade 

also has negative effects. Administrative support staff and professionals in the educational services 

industry are significantly more likely to be employed in March. Administrative support personnel 

in the FIRE industry are also significantly more likely to be employed hi March. Both industry 

and occupation clearly make a difference. For example, waitresses in eating and drinking places 

are not significantly less likely to be employed in March, unlike cooks or cashiers in eating and 

drinking places. Cashiers hi grocery stores are not significantly less likely to be employed in 

March, unlike cashiers hi eating and drinking places or the rest of retail trade.

15Actually, because these are discrete effects, the actual effect of an industry/occupation pair differs slightly 
from adding the two separate discrete effects together, but simply adding the two will give a quite close 
approximation.
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Table 8
Estimated Effects on March Employment Probabilities,

and Ratios to Standard Errors, For 26 Occupation/Industry
Combinations that Employ More than 1 % of Sample

Occupation and Industry

Waitresses/eating&drinking places
Health aides/nursing industry
Other food occs/eating&drinking places
Machine operator/nondurable goods
Misc. occupation/misc. industry
Private household svc occ and industry
Cooks/eating & drinking places
Maids/hotels & motels
Cashiers/eating and drinking places
Cashiers/grocery stores
Cashiers/rest of retail trade
Other sales occs/rest of retail trade
Cleaning occs/rest of business&repair svcs.

Other admin, support occ/educational svcs.

Other admin, support occ/misc. inds
Assemblers & inspectors/durable goods
Other adm. supp. /finance-insurance-real estate
Health aides/other medical svc. inds.
Cashiers/department stores
Other personal service/social & other svcs.
Professionals/educational svcs.
Assemblers & inspectors/nondurables
Machine operators/durable goods
Other adm. supp. /public administration
Other adm. supp. /rest of bus & repair svcs.
Child care occ/social & other svcs.
Total of 26 Occupation/Industry combinations

Percent of Sample

5.9%
4.3
4.2
4.0
3.6
3.5
3.0
3.0
2.8
2.7
2.4
2.0
1.8
1.7
1.6
1.6
1.5
1.4
1.3
1.3
1.2
1.1
1.1
1.1
1.0
1.0

60.1%
of sample

Effect (Ratio to Standard Error)

-0.023
0.041

-0.015
0.009

-0.028
-0.025
-0.084*

-0.011
-0.074*

-0.002
-0.077*

-0.017
-0.014
0.123*

-0.048
0.017
0.094*
0.072

-0.046
0.037
0.165*

-0.047
0.074

-0.016
0.005
0.006

(-0.91)
(-1.50)
(-0.55)
(0.33)

(-1.11)
(-0.71)
(-2.63)
(-0.32)
(-2.52)
(-0.05)
(-2.56)
(-0.51)
(-0.37)
( 3.95)
(-1.74)
(0.44)
(2.36)
( 1-75)
(-1-18)
( 0.87)
(4.05)
(-1.17)
( 1.86)
(-0.40)
(0.14)
(0.13)

Note: These effects are measured from a model with both occupational and industry dummies, but no interaction 
terms between occupation and industry. Hence effects are based on sum of occupation and industry coefficients. 
Effects are measured as change in probability of employment in March for someone employed last year in that 
occupation/industry combo, compared to individual in "average" occupation and industry last year. Effects are 
measured at mean March probability of employment of .478 for those employed last year. Number in parentheses 
is ratio of sum of coefficients to standard error of that sum, calculated from variance/covariance matrix of probit 
index function coefficients. The coefficient sum should be asymptotically distributed normally. If ratio is greater than 
two in absolute value, corresponding effect is marked with asterisk.
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For a more limited sample, the "outgoing rotation group" of the March CPS, data are also

available on March usual weekly earnings, weekly work hours, and average wage rate. Table 9 

reports estimates when earnings, work hours, and wage rates in March are used as dependent 

variables. As described in the methodology section, the earnings and hours estimating equations 

are estimated using tobit techniques. The wage rate equation is estimated using Heckman's two- 

stage method of correcting for selection bias in a regression equation.

To allow comparisons across the dependent variables, Table 9 reports estimated effects in 

percentage terms. Effects are reported as a percentage of the mean value of the dependent variable 

for sample members who worked last year. 16 The percentage effect on earnings of an independent 

variable should approximately equal the sum of its percentage effects on work hours and hourly 

wages, because weekly earnings is the product of work hours and hourly wages. Table 8 also 

includes the percentage effects of all variables on the March probability of employment. A 

comparison of the percentage effect of a variable on March employment, with its percentage effect 

on March weekly work hours, suggests how the variable affects weekly work hours for those 

working. The percentage effect on total work hours should approximately equal the sum of the 

percentage effect on the probability of working plus the percentage effect on average work hours 

for those working. The percentage effects of an independent variable on hours, minus the 

percentage effect on March employment probabilities, should approximately equal the percentage 

effects on hours for those working hi March. 17

16The effects for the tobit equations are percentage effects on the actual dependent variable, not the latent 
dependent variable that is truncated at zero.

17In theory, one could directly estimate an equation with a variable equal to weekly work hours for those 
working, and missing for those not working. This would require "heckit" estimation, as the sample of those working 
is a selected sample. However, good heckit estimates require excluding some variables from the regression equation
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Table 9
Percentage Effects of Last Year's Work Activity,

Wage Rate, Usual Work Hours, and Occupation and Industry,
on This March's Employment, Weekly Work Hours, Wage Rate,

and Weekly Earnings, for Single Mothers Receiving Welfare Last Year

Percentage effect on 
March employment 

Variable probability

Worked last year 
(0-1 variable)
Usual weekly work hours last year 
(change of 20 work hours)
Wage rate last year 
(doubling of wage rate)
Occupation categories (0-1 variables):
Sales
Administrative support
Food services
Other services
Machine operators/inspectors
Miscellaneous occupations
Industry categories (0-1 variables):
Eating and drinking places
Rest of retail trade
Personal services/private household
services
Health services
Professional/social/educational
services
Manufacturing
Miscellaneous industries

85.5%*

-2.2%

8.5%*

-1.5%
5.2%
0.6%

-1.0%
-3.0%
-1.1%

-8.3%
-5.5%
-0.1%

15.0%*
12.6%*

4.0%
-7.3%*

(28.68)

(-0.94)

(5.01)

(-0.36)
(1.55)
(0.14)

(-0.31)
(-0.55)
(-0.40)

(-1.75)
(-1.28)
(-0.03)

(3.53)
(3.30)

(0.80)
(-2.60)

Percentage effect on 
March weekly work 
hours (includes zero 
March work hours)

89.8%*

20.0%*

18.9%*

5.8%
4.1%
1.9%

-0.9%
5.8%

-10.4%

-7.6%
-13.4%
-3.5%

36.2%*
15.3%

8.8%
-12.9%

(13.66)

(2.75)

(3.31)

(0.46)
(0.41)
(0.14)

(-0.10)
(0.36)

(-1.31)

(-0.56)
(-1.10)
(-0.30)

(2.59)
(1.32)

(0.58)
(-1.66)

Percentage effects 
on March hourly 

wage rate

8.4%

8.4%*

20.6%*

-6.6%
7.9%*

-7.5%
-2.0%
-6.5%
11.0%*

0.1%
-1.9%
-6.1%

-1.0%
6.8%

4.1%
-1.2%

(1.71)

(3.18)

(10.16)

(-1.55)
(2.37)

(-1.71)
(-0.63)
(-1.15)
(3.70)

(0.02)
(-0.42)
(-1.54)

(-0.25)
(1.85)

(0.74)
(-0.44)

Percentage effect on 
March real weekly 

earnings

94.7%*

23.5%*

31.3%*

2.1%
9.8%

-6.1%
-5.4%
4.6%

-0.9%

-5.6%
-18.4%
-7.8%

37.5%*
23.6%

10.9%
-14.7%

(14.29)

(3.12)

(5.65)

(0.16)
(0.91)

(-0.43)
(-0.56)
(0.27)

(-0.10)

(-0.39)
(-1.46)
(-0.63)

(2.58)
(1.91)

(0.69)
(-1.82)

Notes: Numbers in parentheses are ratios of estimated underlying coefficients to standard errors. Estimates should be 
asymptotically distributed normally. If ratio is greater than 2 in absolute value, corresponding effect is marked with asterisk. 
Estimates are derived from probit specification for the March employment dependent variable, tobit for work hours and weekly 
earnings dependent variables, and from regression equation corrected for selection bias for wage dependent variable. All estimates 
include same control variables as in Table 7 and Table 3, except that wage equation drops variables for number of own children. 
For all occupation and industry dummies, estimated effects are effects of being in that occupation or industry, compared to being 
in "average" occupation or industry. These effects are evaluated at mean value of working in March of .478 for those working 
last year. Effects are converted to percentage effects, for employment, hours, and earnings dependent variables, by using sample 
mean values of dependent variables for those working last year: .478 for employment in March, 13.5 hours for work hours, and 
$90.98 per week in earnings. For wage rate dependent variable, which is natural logarithm of real wage rate, effects are converted 
to actual percentages. For worked last year variable, effect evaluated is change from one to zero. For usual weekly hours last year 
variable, calculated effects are for change of 20 hours per week. For wages last year variable, calculated effect is for change in 
natural logarithm of wages last year of .693, where .693=ln(2.0). So change considered is doubling of hourly wage. Calculated 
effects are extrapolation of marginal effects, where all marginal effects are calculated from mean March employment probability 
of .478. The changes in hours and wage variables are both a little less than a two standard deviation change (see Table 3).

that are in the selected equation. It is almost impossible to think of a variable that would plausibly affect the 
probability of working, yet not also affect the hours one would work if one was working.



40

Table 9 reports results for one specification, with 10 percent industry/occupation dummies 

but no firm size dummies. This specification is one of eight possible specifications that were tried. 

The other specifications varied in whether both industry and occupation were included, in using 

the 10 percent or 2.5 percent level of detail, and in whether firm size dummies were included. 

Firm size dummies were dropped because they were always both statistically and substantively 

insignificant. Estimates at the 2.5 percent level of classification yielded estimates that were 

extremely imprecise. The AIC and SBC model selection criterion both agreed that the industry- 

only, 10 percent classification level was optimal for the hours and earnings estimating equations. 

The AIC and SBC model selection criterion both indicated that the occupation-only, 10 percent 

classification level was optimal for the wages estimating equations. The inclusion of both industry 

and occupation dummies allows both industrial and occupational effects to be analyzed hi a 

comparable way for all dependent variables.

The estimates suggest that whether one worked last year has huge effects on March weekly 

earnings. Almost all these effects are due to effects of working last year on usual March weekly 

work hours. Almost all these work hour effects are due to effects on the probability of being 

employed hi March. Wage rate effects on March usual weekly earnings are much larger in 

percentage terms than are effects on the March employment probability. Doubling the wage rate 

of the job held last year is associated with increasing usual weekly earnings in March by over 30 

percent. The effect on earnings is large, even though the effect on the March employment 

probability is so modest, for two reasons. First, increasing last year's wage rate is associated with 

substantial increases in the March wage rate. Second, an increase in last year's wage is associated 

with greater March work hours for those working. Increasing usual weekly work hours also has
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large positive effects on March earnings: an increase from 20 to 40 work hours per week last year 

is associated with an increase in March earnings of over 23 percent. Most of this effect of usual 

hours last year on March weekly earnings appears to be due to increases in March weekly work 

hours for those working.

Industry effects are much more important than occupation effects for earnings and work 

hours. This appears to be partially due to using the 10 percent level of classification, as occupation 

effects also diminish hi importance for the March employment status dependent variable. On the 

other hand, for wage rates hi March, last year's occupation appears to be much more important 

than last year's industry.

The industry effects on earnings are consistent with what was previously discovered about 

industry effects on March employment probabilities. The industries with the largest positive 

effects on March earnings are health services (which includes hospitals) and the professional/ 

social/educational services aggregation. A substantial portion of both of these earnings effects is 

due to effects on the March employment probability. Health services employment last year is also 

associated with an increase in March weekly work hours for those already working. The 

professional/social/educational services industry is associated with higher March wages. These 

industry effects hold last year's wage rate constant, so these industry effects on March wages 

reflect effects on the probability of getting a wage increase.

The occupational variables have no effects on weekly earnings or work hours that are even 

close to statistical significance. The occupational categories do have some statistically significant 

effects on the hourly wage rate. Part of the difference in statistical significance between the wage 

equation, and the earnings and work hours estimating equations, is that standard errors, expressed
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in percentage terms, are considerably smaller in the wage equation than in the earnings and work 

hour estimating equations. Standard errors in the wage equation for the occupational categories 

and industrial categories are often less than five percent. In the earnings and hours equations, 

standard errors are often greater than 10 percent. Apparently there is considerable "noise" in how 

many hours people work, and in their earnings, that cannot be explained by the variables in the 

model, whereas there is less unexplained noise hi the wage equation. Even the March employment 

status equation, which has a much larger sample size than for the wage equation, has standard 

errors of similar size to the wage equation.

The wage equation's findings suggest that employment last year hi administrative support 

occupations tends to increase March wages. Because this estimation controls for average wages 

last year, the interpretation is that administrative support occupations are more likely to lead to 

wage increases between last year and March than is the average occupation. Administrative 

occupations also seem to increase the March employment probability. On the other hand, 

employment last year hi sales occupations, or in food services occupations, appears to be 

associated with lower March wages, controlling for last year's wages.

Interpretation

One of the most important issues is how to interpret all these "effects" of working at a job 

with a particular set of characteristics last year. Are these true effects of getting a particular job, 

or do these effects reflect differences in unobserved characteristics of individuals who tend to get 

particular jobs?
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Several arguments can be offered suggesting that these effects are, at least in part, true

effects. First, industry effects tend to be greater than occupation effects. One would expect 

unobservable personal characteristics to be more important in sorting persons across occupations 

than across industries. If all the estimated effects were due to unobservable personal 

characteristics, the occupation effects should be stronger.

Second, the effects of last year's wage rate tend to be relatively modest, particularly on 

whether someone is employed. One would expect last year's wage rate to be significantly higher 

for individuals who, for unobservable reasons, have higher productivity. The modest effects of 

the wage rate suggests that the effects of unobservable personal characteristics must be modest, 

particularly on whether an individual is employed in March.

Third, the effects of whether one worked at all last year, and the industry one worked in, 

tend to be more on March employment status and work hours, and less on the March hourly wage 

rate. One would expect unobservable personal characteristics to have important effects on the 

March wage rate. This suggests that at least some of the effects of working last year, and of 

working in a particular industry, are true effects.

Finally, many of these effects of last year's employment activities on March employment 

and earnings are huge. This increases the chance that these effects are to some extent true effects, 

and not simply a reflection of unobservable personal characteristics.

Assume that these effects of last year's employment activities are to some extent true 

effects. Speculative reasons can be offered for why these effects occur.

Whether someone worked last year may lead to human capital accumulation. Both general 

and firm-specific human capital may be accumulated. This worker has the advantage of being a
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known quantity to the employer. By continuing to employ this worker, the employer avoids hiring 

and initial training costs that may result in a new worker who is no more productive.

Higher wage jobs may have persistent wage advantages, based on how firms have chosen 

to compensate that job relative to other wages available in the market. These higher wages lead 

to greater job retention. The effects of wages may be relatively modest because job retention may 

depend much more on a wide variety of firm-specific personnel practices how jobs are 

supervised, what kind of OJT the firm provides, etc.

The usual weekly hours last year may tend to persist because jobs tend to be defined by 

firms as either part-time or full-time. Full-time jobs may be more likely to lead to wage increases, 

controlling for last year's wages. The lack of any effect of usual weekly hours on job retention 

may reflect the pros and cons of higher weekly hours from the perspective of single mothers. Full- 

time jobs may be better jobs, but part-time jobs may be more consistent with fulfilling other 

family responsibilities.

Several speculative reasons can be offered for the industry and occupation effects. 

Temporary help employment is of course temporary, and handler/laborer occupations may in 

many cases also be casual jobs. Cashiers must have some technical skills and be able to handle 

pressures for accuracy. Hospitals and the educational services industry may have more in common 

with the regular activities of many welfare recipients. These industries, durable manufacturing, 

and finance/insurance/real estate may have less pressure for dealing with customers. Durable 

manufacturing industries, hospitals, and educational services may be more likely to offer benefits, 

which are not measured in these data. Secretaries and other administrative support occupations 

may have less pressure for dealing with customers. Furthermore, such occupations may tend to
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have more defined career ladders, and involve acquiring more firm-specific skills while on the

job. In contrast, cooks and other food service occupations may be relatively high pressure 

occupations that require constantly dealing with the changing needs of customers.

5. Conclusion

These results demonstrate that there are large correlations between a welfare mother's 

employment activity hi one year, and her employment, wage rate, and earnings the next year. 

What is most important about last year's employment activity is whether any occurred, with 

welfare mothers who work hi one year being much more likely to work the next year. The 

characteristics of the job also matter a great deal: its wage, usual hours, industry, and occupation.

The results suggest but do not prove that these effects of last year's job characteristics are 

true effects, and not simply due to who is hired for different jobs. Future research should try to 

separate the true effects of jobs from the effects of who is placed in jobs. This research would 

require instruments that shift employment opportunities, but are uncorrelated with unobserved 

personal characteristics.

These results have some important implications for policymakers interested hi getting more 

welfare mothers into jobs, and making those jobs sustainable in the long term. The most important 

implication is that the characteristics of jobs matter. Policymakers should consider efforts to target 

higher-wage jobs, jobs in the hospitals or educational services industry, and jobs with less 

customer contact and less intense supervisory pressures. Programs should try to ensure that 

welfare recipients have the characteristics needed to succeed in whatever types of jobs are 

targeted.
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Finally, whatever programs do in targeting jobs and preparing welfare recipients for those 

jobs, many welfare mothers will not succeed in retaining those jobs. We need more research on 

what policy can do to respond to job loss by welfare mothers and other disadvantaged clients of 

government programs. There are a few programs hi existence that attempt to respond to job loss. 

Project Match, for example, has for many years focused on providing long-term assistance to 

welfare recipients. Clients are typically helped through many cycles of obtaining a job, losing a 

job, getting some training, obtaining the next job, etc. Furthermore, the federal government is 

currently conducting a social experiment (the Postemployment Services Demonstration) that 

examines the effectiveness of intensive case management in dealing with job retention problems. 

Whatever the outcome of this social experiment, job retention is such a huge problem that we 

must continue to consider more creative and effective policy solutions.
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Appendix

The occupation and industry codes used by the CPS are slightly different for the 1992- 

95 period compared to the 1983-91 period. Some aggregation of categories over time was 

needed for the occupation and industry categories to be completely consistent. In addition, hi a 

few cases the numbering system was changed between 1983-91 and 1992-95.

For the Census occupation codes the following changes are made

1. For the 1992-95 data, the managerial codes 17, 21, and 22 were combined into one 

category (22), to be compatible with pre-92 data which combined these three occupations. 

Also, the three child care worker categories 466-468 were combined into one category (466) to 

be compatible with pre-92 data.

2. For the pre-1992 data: The managerial codes 16-19 were renumbered to conform to 

1992-95 data. Telegraph operator (349) was merged into communication equipment operators 

n.e.c. (353) because telegraph operator is not a separate defined occupation in 1992-95. 

Occupation 369 was merged into 368, and 437 into 436, in both cases because these 

occupations were combined after 1992. 463-468 were renumbered to follow the 1992-95 

numbering scheme. 633 was renumbered as 628 to match the 1992-95 data. 673 was merged 

into 674, 794 into 795, and 805 into 804, hi all cases because these occupations were merged 

hi the 1992-95 data. 863-867 were renumbered to match the 1992-95 numbering system. 873 

was renumbered as 874 to match the 1992-95 numbering system.

For the Census industry codes the following changes were made: 

1. On pre-1992 data change the following industry codes:
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20 to 12
21 to 20
30 to 31
31 to 32
460 to 450
461 to 451
462 to 452 
510 to 532
630 to 623
631 to 630
632 to 631 
661 to 662 
730 or 732 to 891 
740 to 732 
742 to 741
801 to 802
802 to 810 
892 to 893.

2. For 1992-95, change the folio whig industry codes:

30 to 12 
510 to 530 
632 or 633 to 640 
661 to 682 
892 to 891 
801 to 741 
742 to 750 
863 to 862 
873 to 881.

These changes make the old and new industry codes as close to consistent as possible.

For information and reference, tables A-l through A-4 present a complete list of the 

occupation and industry of the longest job last year for the 6720 individuals in this sample who 

were employed last year (later exclusions in the analysis for implausible wage rates reduced the 

number employed hi the sample to 6338). These lists use the detailed occupation codes, major 

occupation group codes, detailed industry codes, and major industry group codes that are used 

from 1992-95.
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Occupations or industries are listed in descending order of the number employed last year for 

this sample of 6720.
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Table A-l
Distribution of Welfare Recipients' Jobs Last Year, 

By Detailed Occupation Recedes

Occupation 
Recede

29

22

26

31

30

43

32

24

27

44

42

46

34

3

45

25

50

16

15

49

17

51

35

20

21

28

5

14

Detailed Occupation Recede Name

Food service

Other sales

Other administrative support occupations

Cleaning and building service

Health service

Machine operators and tenders, except precision

Personal services

Secretaries, stenographers, and typists

Private household services

Fabricators, assemblers, and hand-working occupations

Other precision production

Transportation

Farm occupations, except managerial

Salaried managers

Production inspectors, testers, samplers, and weighers

Financial records processing

Other handlers, equipment cleaners and helpers

Other professional specialty

Teachers, except postsecondary

Freight, stock, and material handlers

Health technologists and technicians

Laborers, except construction

Related agricultural

Sales supervisors and proprietors

Sales representatives, commodities and finance

Protective service

Management related

Librarians, counselors, and college teachers

Number 
Employed 

Last Year in 
Occupation

1,091

894

700

562

514

430

407

266

245

151

103

99

98

93

88

86

84

80

78

75

70

63

55

48

47

47

33

33

Percent 
Employed

16.2

13.3

10.4

8.4

7.6

6.4

6.1

4.0

3.6

2.2

1.5

1.5

1.5

1.4

1.3

1.3

1.3

1.2

1.2

1.1

1.0

0.9

0.8

0.7

0.7

0.7

0.5

0.5

Cumulative 
Percentage

16.2

29.5

40.0

48.3

56.0

62.4

68.4

72.4

76.0

78.3

79.8

81.3

82.7

84.1

85.4

86.7

88.0

89.2

90.3

91.4

92.5

93.4

94.2

94.9

95.6

96.3

96.8

97.3
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Table A-l (Continued)

Occupation 
Recede

13

23

38

37

48

6

19

18

4

41

33

40

1

39

9

47

52

10

36

7

12

Detailed Occupation Recede Name

Health assessment and treating

Computer equipment operators

Construction trades and extractive

Mechanics and repairers

Construction laborers

Accountants and auditors

Technicians, except health, engineering and science

Engineering and science technicians

Self-employed managers

Precision metal working

Farm operators and managers

Supervisors of precision production

Public administration

Carpenters

Natural scientists and mathematicians

Material moving equipment operators

Armed forces

Computer systems analysts and scientists

Forestry and fishing

Architects and surveyors

Physicians and dentists

Number 
Employed 

Last Year in 
Occupation

32

25

16

13

13

12

11

9

7

7

6

6

4

4

3

3

3

2

2

1

1

Percent 
Employed

0.5

0.4

0.2

0.2

0.2

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Cumulative 
Percentage

97.8

98.2

98.4

98.6

98.8

99.0

99.1

99.3

99.4

99.5

99.6

99.7

99.7

99.8

99.8

99.8

99.9

99.9

100.0

100.0

100.0

Notes: Numerical codes and names come from Appendix B to March 1995 Current Population Survey, "Detailed 
Occupation Recedes for Longest Job Last Year." Total employed hi sample last year is 6720.
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Table A-2
Distribution of Welfare Recipients' Jobs Last Year, 

by Major Occupation Group Recedes

Occupation 
Recede

8

5

4

11

6

13

2

9

1

10

12

3

7

14

Major Occupation Recode Name

Service occupations, except household and protective

Administrative support, including clerical

Sales

Machine operators, assemblers, and inspectors

Private household service

Handlers, equipment cleaners, helpers, and laborers

Professional specialty

Farming, forestry, and fishing

Executive, administrative, and managerial

Precision production, craft, and repair

Transportation and material moving

Technicians and related support

Protective service

Armed forces

Number 
Employed 

Last Year in 
Occupation

2574

1077

989

669

245

235

230

161

149

149

102

90

47

3

Percent 
Employed

38.3

16.0

14.7

10.0

3.6

3.5

3.4

2.4

2.2

2.2

1.5

1.3

0.7

0.0

Cumulative 
Percentage

38.3

54.3

69.0

79.0

82.6

86.1

89.6

92.0

94.2

96.4

97.9

99.3

100.0

100.0

Notes: Occupation numerical codes and names come from Appendix B to March 1995 Current Population Survey, 
"Major Occupation Group Recedes for Longest Job Last Year." Total employed in sample is 6720.
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Table A-3
Distribution of Welfare Recipients' Jobs Last Year, 

by Detailed Industry Recedes

Industry 
Recede

32

41

38

36

42

43

35

46

40

18

21

28

1

31

34

44

39

33

23

3

11

20

26

8

12

10

27

37

Detailed Industry Recede Name

Retail trade

Health services, except hospitals

Personal service, except private household

Business services

Educational services

Social services

Private household service

Public administration

Hospitals

Food and kindred products

Apparel and other finished textile products

Transportation

Agriculture

Wholesale trade

Insurance and real estate

Other professional services

Entertainment and recreation services

Banking and other finance

Printing, publishing, and allied industries

Construction

Electrical machinery, equipment, supplies

Textile mill products

Rubber and miscellaneous plastics products

Fabricated metals

Motor vehicles and equipment

Machinery, except electrical

Leather and leather products

Repair services

Number 
Employed 

Last Year in 
Industry

2025

560

498

488

380

379

280

198

189

155

141

136

135

125

118

115

113

67

65

55

55

43

39

37

33

29

27

25

Percent 
Employed

30.1

8.3

7.4

7.3

5.7

5.6

4.2

2.9

2.8

2.3

2.1

2.0

2.0

1.9

1.8

1.7

1.7

1.0

1.0

0.8

0.8

0.6

0.6

0.6

0.5

0.4

0.4

0.4

Cumulative 
Percentage

30.1

38.5

45.9

53.1

58.8

64.4

68.6

71.5

74.4

76.7

78.8

80.8

82.8

84.7

86.4

88.1

89.8

90.8

91.8

92.6

93.4

94.0

94.6

95.2

95.7

96.1

96.5

96.9
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Table A-3 (Continued)

Industry 
Recede

5

15

29

24

22

17

16

4

6

7

30

45

2

14

19

13

Detailed Industry Recede Name

Furniture and fixtures

Professional and photo equipment, watches

Communication

Chemicals and allied products

Paper and allied products

Miscellaneous and not specified durable goods

Toys, amusements, and sporting goods

Lumber and wood products, except furniture

Stone, clay, glass, concrete products

Primary metals

Utilities and sanitary services

Forestry and fisheries

Mining

Other transportation equipment (not motor vehicles or 
aircraft)

Tobacco manufacturers

Aircraft and parts

Number 
Employed 

Last Year in 
Industry

24

24

22

21

20

18

16

14

10

9

9

6

5

5

4

3

Percent 
Employed

0.4

0.4

0.3

0.3

0.3

0.3

0.2

0.2

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.0

Cumulative 
Percentage

97.2

97.6

97.9

98.2

98.5

98.8

99.0

99.2

99.4

99.5

99.7

99.7

99.8

99.9

100.0

100.0

Notes: The numerical industry codes and names for this table are from Appendix A to the March Current 
Population Survey, "Detailed Industry Recedes for Longest Job Last Year." The total employed last year in the 
sample is 6720.
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Table A-4
Distribution of Welfare Recipients' Jobs Last Year, 

by Major Industry Group Recedes

Industry 
Recode

8

13

11

5

10

4

14

9

6

1

7

12

3

2

Major Industry Recode Name

Retail trade

Professional and related services

Personal services including private households

Nondurable goods

Business and repair services

Durable goods

Public administration

Finance, Insurance, and Real Estate

Transportation, communication, and other public utilities

Agriculture, forestry, and fisheries

Wholesale trade

Entertainment and recreation services

Construction

Mining

Number 
Employed 
Last Year 
in Industry

2025

1623

778

515

513

277

198

185

167

141

125

113

55

5

Percent 
Employed

30.1

24.2

11.6

7.7

7.6

4.1

2.9

2.8

2.5

2.1

1.9

1.7

0.8

0.1

Cumulative 
Percentage

30.1

54.3

65.9

73.5

81.2

85.3

88.2

91.0

93.5

95.6

97.4

99.1

99.9

100.0

Notes: The numerical industry codes and names used here are from Appendix A to the March 1995 Current 
Population Survey, "Major Industry Group Recedes for Longest Job Last Year." The total employed hi the 
sample last year is 6720.
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