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1 Introduction

Social networks affect which and when job seekers find work, the types of jobs they end up in,

and the wages they are paid. They channel information to both employers and workers about the

existence of potential matches and the quality of those matches. There are also persistent racial

differences in the use and productivity of referrals—differences that arise because social networks

tend to form along existing lines of social and economic stratification (McPherson et al., 2001;

Pedulla and Pager, 2019). Theory suggests that the widespread practice of referral hiring may

perpetuate or exacerbate racial disparities in labor market outcomes by funneling opportunities

within groups (Calvo-Armengol and Jackson, 2004; Bolte et al., 2020; Okafor, 2020). Yet the

extent to which referral hiring contributes to racial inequality in practice is not well understood.

For example, while several single-firm case studies find that the racial composition of a firm’s

referral hires tends to reflect the racial composition of the firm’s incumbent employees (Fernandez

et al., 2000; Fernandez and Sosa, 2005; Petersen et al., 2000), it is not clear to what extent referral

hiring shapes the composition of employees in the first place or persistently favors specific groups

over time.

We study the firm-level implications of referral hiring for racial inequality in labor demand and

match quality using detailed employer-employee data from Brazil, a country with well-documented

racial disparities in employment rates and wages.1 We emphasize how the role of referral hiring

evolves over a firm’s life cycle. We present a simple job search model where (a) social networks

are racially segregated, (b) firms are more informed about the match quality of job seekers who

are referred by an incumbent employee, and (c) at least some referrals are made by nonreferred

employees. We confirm four key predictions of the model. First, firms with white founders are

more likely to hire white employees than comparable firms with nonwhite founders. Second, these

differences disappear as firms’ cumulative number of hires increases. Third, firms are less likely

to dismiss recent hires of the same race as the firm’s founder, indicating those hires are less likely

to be an ex-post poor match. Fourth, racial differences in dismissal rates are also decreasing in a

firm’s cumulative number of hires. Yet few firms hire enough employees to reach convergence in

their racial composition of hires or dismissal rates. We then show that our findings, given that

founders are disproportionately white, help to explain three stylized facts about racial differences

in labor market outcomes: nonwhite workers are more likely to be dismissed by their employers,

have less seniority, and sort to larger employers than white workers.

We first describe a simple job search model based on Morgan and Várdy (2009) where a firm

posts job vacancies and is matched with job seekers either through referral or the external market.

At the firm’s entry, referrals are drawn from the founder’s network. Once the firm has hired

additional employees, referrals are drawn from other incumbent employees as well. We assume

that referral networks are segregated so that the racial composition of referral candidates tends

1See, for example, Silva (1980, 1985); Lovell (1994); Cavalieri and Fernandes (1998); Arcard and d’Hombres
(2004); Arias et al. (2004); Matos and Machado (2006); Garia et al. (2009); Reis and Crespo (2015); Gerard et al.
(forthcoming); Derenoncourt et al. (2021).
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to reflect the racial composition of incumbent employees. Following much of the literature (Topa,

2019), we also assume that a job seeker’s match-specific productivity is more uncertain when they

are matched to the firm via the external market. To match the observation that large employers

invest more in formal hiring methods and find a smaller share of their hires via referral (Barron et

al., 1987; Holzer, 1987a; Marsden, 1994; Rebien et al., 2020), we further suppose that the firm can

invest in a (fixed cost) recruitment and screening technology that reduces the relative uncertainty

associated with external market candidates.

The model has stark predictions for how a firm’s racial composition of hires and racial differ-

ences in dismissal rates evolve over time. The first prediction is that firms with white founders are

more likely to hire white employees than comparable firms with nonwhite founders. This follows

immediately from the assumption that referral networks are racially segregated. The second pre-

diction is that the racial composition of hires for firms with white and nonwhite founders converges

as firms’ cumulative number of hires increases. The correlation between the race of a firm’s founder

and the firm’s racial composition of recent hires weakens with the firm’s cumulative number of

hires for two reasons. First, employees hired via the external market eventually provide referral

candidates themselves, pushing the composition of hires toward the composition of external mar-

ket candidates. Second, firms that expect to hire more employees invest in hiring technology that

reduces the referral share of hires.

The third prediction is that firms are less likely to dismiss recent hires of the same race as the

firm’s founder. In the model, referral hires are less likely to be poor matches ex-post and hence

should have lower turnover rates. This turnover advantage should diminish with job tenure as

both the employer and worker learn about match quality. At firms with white founders, white

hires are more likely to be referrals than nonwhite hires, while the opposite is true at firms with

nonwhite founders. The fourth prediction is that racial differences in dismissal rates are diminishing

in a firm’s cumulative number of hires. The referral share of recent white and nonwhite hires will

become more similar as employers’ cumulative hires increase, both because the racial composition

of referral and nonreferral candidates become more similar and because the overall referral share

of hires is smaller at firms that hire more workers.

We evaluate the model using linked employer-employee data from Brazil. First, we test two

key assumptions: 1) referral networks are racially segregated, and 2) the use of referral hiring is

decreasing in employer size. While both assumptions have been shown to hold in other settings,

we show that they hold in our data as well. The idea behind our tests is that if referrals are an

important hiring channel, we should observe that firms are more likely to hire job seekers with a

social connection to one of their incumbent employees. Since we do not observe referrals directly,

we proxy for social connections by identifying pairs of workers who worked together in the past.2

2A growing body of research establishes that job referral effects can be credibly measured using models that proxy
for social connections using information on past coworkers (Cingano and Rosolia, 2012; Hensvik and Skans, 2016;
Saygin et al., 2021; Glitz, 2017), residential neighbors (Bayer et al., 2008; Hellerstein et al., 2014; Schmutte, 2015),
and family ties (Kramarz and Skans, 2014). We focus on past coworking connections because the RAIS data do not
allow us to track residential location or family relationships.
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Following Eliason et al. (2020), we measure the effect of social connections on where workers sort

by comparing the destinations of workers who separate from the same employer but have different

social connections. We refine their approach by comparing outcomes when a true coworker is present

to the outcomes for what we call placebo coworkers—those pairs who were previously employed in

the same job but at slightly different times. Consistent with racially segregated referral networks,

we find the effects of social connections on hiring probabilities are substantially larger when the

potential hire and connected incumbent are of the same race.3 We also show that the effects of

social connections are decreasing in destination plant size.

Second, we show that the racial composition of hires for firms with white and nonwhite founders

differs substantially at entry but converges as their cumulative number of hires increases. For the

same local labor market and occupation, early hires at firms with white founders are about 40

percent more likely to be white than early hires in similar positions at firms with nonwhite founders.

Yet at firms with a white founder, the nonwhite share of hires increases sharply with cumulative

hires, and the nonwhite share of hires decreases with cumulative hires at firms with nonwhite

founders. These patterns hold within a balanced panel of firms. The racial composition of hires

at firms that have hired 350 or more workers after their year of entry is unrelated to founder race.

Yet most firms do not reach this scale—five years after entry, fewer than 1 percent of remaining

firms have made this many hires, accounting for 14 percent of hires.

Third, we confirm model predictions for turnover patterns. Consistent with firms having supe-

rior information about the match quality of referral job candidates, recent hires with preexisting

social connections at their employers are dismissed at substantially lower rates than recent hires

without those connections, and recent hires with placebo connections in particular. This turnover

advantage decreases over the job spell. We also find that nonwhite employees are dismissed at

higher rates than white employees at firms with white founders, while the opposite is true for

firms with nonwhite founders. These racial differences in dismissal rates are declining in a firm’s

cumulative number of hires and over the course of the job spell.

We then examine the implications of our findings for racial inequality in the labor market.

A key market feature for understanding the aggregate implications of referral hiring is that racial

disparities in labor market outcomes often coincide with racial differences in entrepreneurship rates.

In Brazil, white men and women engage in entrepreneurship at rates about twice as high as nonwhite

men and women, where we define entrepreneurship as running a formal or informal business with

at least one paid employee. This suggests that small or young firms will disproportionately favor

white job seekers in hiring.

Following this reasoning, we discuss three stylized facts about racial differences in labor market

outcomes that are consistent with the dynamics of referral-based hiring: relative to white workers,

nonwhite workers 1) are more likely to be dismissed by their employers, 2) have less seniority,

and 3) sort to larger employers. All three patterns are driven by employers with white founders.

3These results are also related to a literature showing that close connections are more valuable for job finding
(Gee et al., 2017a).
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Interestingly, the first and third patterns also hold for Black and white workers in the United States

(Lang and Lehmann, 2012; Cavounidis et al., 2021; Holzer, 1998; Miller, 2017), suggesting referral

hiring may have similar dynamic implications for racial inequality there.4

There are alternative explanations for some of our findings, but we show that none can easily

match the combination of findings we document. For example, discriminatory founder or coworker

preferences can potentially explain why firms with white founders have more white employees

than comparable firms with nonwhite founders, and why larger firms are more racially diverse

(if less discriminatory firms are more productive). But it is unclear how that mechanism would

generate racial differences in dismissal rates or convergence between firms with white and nonwhite

founders over time in hiring and dismissal behavior. Moreover, mobility patterns suggest that white

and nonwhite workers do not have systematically different preferences over employers, at least as

characterized by founder race and cumulative hires (Bagger and Lentz, 2018; Sorkin, 2018). There is

one alternative mechanism that could yield similar predictions to the referral mechanism emphasized

here: hiring managers are better at screening same-race applicants (Giuliano et al., 2011; Åslund

et al., 2014; Benson et al., 2019; see also Fisman et al., 2017). We view these mechanisms as similar

in that they both posit that social (or cultural) proximity affects screening ability. We focus on

referral hiring because aspects of referral hiring that are essential to the model examined here—

that referral networks are racially segregated and employers have additional information about

the match quality of referral candidates—are empirically supported in our setting and the broader

literature. By contrast, the premise that managers are better at screening same-race applicants is

more speculative.

Our findings have implications for policy. First, they provide a novel rationale for affirmative

action policies. As firms mature, the racial composition of their hires (slowly) converges to the

composition of the external market. A policy that incentivizes firms to hire workers from groups

underrepresented at the firm relative to the external market would accelerate this process. More-

over, temporary affirmative action policies will have persistent effects, as in Miller (2017). Second,

our findings suggest that market frictions that affect the size distribution of firms will have im-

plications for racial inequality in the labor market. For example, if small, productive firms are

unable to expand to their efficient size due to some resource misallocation (Restuccia and Roger-

son, 2017), these firms are also less likely to have a racially diverse workforce. The logic of our

framework suggests that the aggregate costs of misallocation will be disproportionately borne by

groups underrepresented among entrepreneurs.

We add to a growing economics literature on the role of referral networks. We contribute

methodologically by using placebo coworker connections to identify referral effects in hiring. Our

design was inspired by several previous papers that use similar approaches. Hensvik and Skans

(2016) compare true and placebo coworkers to infer the characteristics of workers who receive and

provide referrals, and the effects of being referred on job outcomes. Caldwell and Harmon (2019)

4To the best of our knowledge, seniority or relative tenure within the same employer by race has not been studied
in the United States.

5



study the effect of coworker networks on job mobility and earnings and compare outcomes based

on how long ago the coworker relationship took place. San (2021) compares hiring outcomes when

a social connection is present and could potentially provide a referral relative to periods just after

they have left the firm. Relative to these papers, our focus on comparing past true and placebo

coworking relationships to identify hiring effects is novel. Furthermore, using the monthly detail

in the data, we show a sharp discontinuity in hiring for workers who actually overlap to those who

almost worked together. These details add broad support and credibility to the literature following

Bayer et al. (2008), who use variation in the amount of social distance between workers to infer

social interaction effects in hiring.

We also contribute to an extensive literature on the role of referral networks in driving persistent

between-group inequality.5 Topa (2001) shows that the concentration of unemployment across

neighborhoods in Chicago can be explained by a model where there are neighborhood interactions

in job search, consistent with the model of Calvo-Armengol and Jackson (2004). A subset of

this literature focuses on employer behavior and how employers’ reliance on referrals influences

inequality. These papers typically study applications to a single firm (Fernandez et al., 2000;

Fernandez and Sosa, 2005; Petersen et al., 2000). We argue that the racial composition of a firm’s

referral hires depends critically on the firm’s initial conditions (which we proxy with the race of

the founder) but converges to that of the external market over the course of the firm’s life cycle.6

This paper provides an alternative rationale for models of statistical discrimination that assume

decision-makers can screen one group of candidates with more precision than another group (Aigner

and Cain, 1977; Lundberg and Startz, 1983; Cornell and Welch, 1996; Morgan and Várdy, 2009).

Prior work has justified this assumption by appealing to between-group differences in culture or

communication. We offer a complementary explanation: small or young firms with white (nonwhite)

founders screen white (nonwhite) job candidates with more precision on average because a higher

share of their white (nonwhite) candidates are referrals.

Finally, we contribute to a literature on entrepreneurship and coracial or coethnic hiring. Bates

(2006) and Boston (2006) document that, in the United States, Black business owners employ Black

workers at higher rates than white business owners, even within the same local labor markets. Both

authors argue that increasing Black entrepreneurship rates will reduce Black unemployment rates.

In contemporaneous work, Dias and Rocha (2021) document a similar pattern in Brazil and find

that racial wage disparities are smaller in firms with nonwhite ownership. Kerr and Kerr (2021)

study coethnic hiring by immigrant entrepreneurs in the United States. They find that the average

new firm with five or more workers has a coethnic share of about 22.5 percent, with substantial

variation by the entrepreneur’s country of origin. Interestingly, they find similar coethnic employee

5While this literature has primarily focused on the United States, our analysis of Brazilian data is relevant. The
key facts that motivate our model are based on studies from the United States, and there is some evidence that
referral use in Brazil is very similar to the United States and other OECD countries (Gee et al., 2017b).

6Another subset of this literature focuses on job search behavior. A central question in this literature is whether
Black job seekers face lower returns to using network-based search methods and, if so, why (Holzer, 1987b; Fernandez
and Fernandez-Mateo, 2006; Pedulla and Pager, 2019; DiTomaso, 2013). Our findings also suggest that nonwhite
workers are more likely to be socially connected to large firms, which are less dependent on referral hiring.
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shares several years after a firm’s birth. By contrast, we focus on how the composition of hires

evolves with an employer’s cumulative hires to date.

The remainder of the paper is organized as follows. Section 2 sets up our job search model and

derives predictions. In Section 3 we describe the Brazilian context and employer-employee data

that form the basis of our study. In Section 4 we test predictions of the model. In Section 5 we

address alternative interpretations of our findings. We examine the implications of our findings for

racial inequality in Section 6. Section 7 concludes.

2 A Job Search Model with Referral Hiring

In this section we describe a simple job search model where a firm’s incumbent employees provide

otherwise unobservable information about the productivity of their social connections to the firm.

Much of the structure closely follows Morgan and Várdy (2009). We derive predictions for how the

racial composition of a firm’s hires varies (a) with the race of the founder, (b) over time, and (c)

with the firm’s size. We also derive predictions for how racial differences in dismissal rates among

recent hires vary with these factors.

We consider the sequential hiring decisions of a single firm, which must fill n vacancies. The

wage for each position is fixed. Consider the firm’s ith vacancy. To fill a vacancy, the firm interviews

randomly drawn candidates at a cost k ≥ 0 per interview. With probability ω, the candidate was

referred by a random member of the firm’s existing workforce, and with probability 1 − ω, the

candidate applied through the external market. Let γ denote the pool from which a candidate is

drawn, with γ = R for referred candidates and γ = E for candidates drawn from external market.

Founder or candidate race is denoted by ρ ∈ {W,N}. Let rhi ∈ {W,N} denote the race of

the ith hired candidate who is hired for vacancy v(i). Let rej ∈ {W,N} denote the race of the

candidate who fills vacancy j, meaning the candidate is both hired for vacancy j and retained

after the probationary period, which is discussed below. The race of the firm’s founder is given by

re0 ∈ {W,N}. Let πj denote the share of the incumbent workforce with race N (“nonwhite share”)

when the firm is filling vacancy j, where

πj =
1

j

j−1∑
`=0

1{re`=N}.

We assume that incumbent employees only refer workers of the same race. Hence, the probability

that a referral candidate for vacancy j is nonwhite is given by πj . This assumption is stark but is

consistent with well-documented racial homophily in referral networks and social networks more

broadly (McPherson et al., 2001; Fernandez and Fernandez-Mateo, 2006; Hellerstein et al., 2011,

2014; Brown et al., 2016).7 Let π̄ denote the nonwhite share of external market candidates.

A candidate’s match-specific productivity, θ, equals one if the candidate can perform the job

7We would reach similar conclusions as long as the probability that a referral candidate is nonwhite is increasing
in πj .
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and zero if the candidate cannot. Let p ≡ Pr(θ = 1) denote the probability that the candidate

drawn randomly from the population of job seekers can perform the job. We assume this probability

is independent of the pool a candidate is drawn from (γ) and candidate race (ρ).

At the interview stage, the firm receives a noisy signal Sγ for the candidate’s productivity,

Sγ = θ + εγ , where εγ is normally distributed with mean zero and variance σ2γ . Following the

literature, we assume that this signal is more precise for referral matches so that σ2R < σ2E (Topa,

2019). Later we will allow firms to improve the precision of external market candidates at some

cost.

For each vacancy, the timing is as follows. In period 1, the firm draws a random candidate

and conducts an interview. On the basis of the candidate’s signal, s, and pool, γ, the firm forms

a posterior belief, q, about the candidate’s match-specific productivity. The firm then decides

whether to hire the candidate, and period 1 ends.

In period 2 and all subsequent periods, if the firm did not hire in the previous period, the firm

interviews a new candidate and the process proceeds as before. If the firm did hire in the previous

period, the employee’s productivity θ is revealed to the firm. If θ = 1, the employee is retained

forever and the firm moves on to fill the next vacancy, if there is one. In that case, the firm receives

a payoff with net present value v > 0. If θ = 0, then the firm receives a payoff with net present value

−w < 0 if it retains the employee and incurs cost c > 0 if it dismisses the employee. Throughout,

we assume that c < w so that it is always optimal to dismiss unproductive employees. Finally, we

assume that the employer is risk neutral and has a discount factor δ ∈ (0, 1).

As Morgan and Várdy (2009) show, the firm’s optimal strategy is to impose a uniform success

probability threshold, q∗, when deciding whether to hire a candidate. This threshold does not

depend on the candidate’s pool or race. Define qγ(s) as the firm’s posterior belief that a candidate

from pool γ with signal s can perform the job; that is, qγ(s) ≡ Pr(θ = 1|Sγ = s). By Bayes’ rule,

this can be written as

qγ(s) =
π[(s− 1)/σγ ]p

φ[(s− 1)/σγ ]p+ φ[s/σγ ](1− p)
,

where φ(·) denotes the probability density of a standard normal random variable.

Let sγ(q) denote the signal realization that corresponds to a given success probability q. Before

the realization of the signal, but after the firm observes a candidate’s pool, the success probability

Qγ = qγ(Sγ) is a random variable. Now, let Gγ(·) denote the cumulative distribution function

(CDF) of Qγ . Gγ(q) is given by

Gγ(q) = pΦ

(
sγ(q)− 1

σγ

)
+ (1− p)Φ

(
sγ(q)

σγ

)
,

where Φ(·) denotes the CDF of a standard normal random variable.

Similarly, let G(·) denote the CDF of the success probability prior to observing a candidate’s

pool or signal, where G(q) = ωGR(q) + (1− ω)GE(q).
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2.1 Composition of Hires

We now consider the probability that a hire is nonwhite. Let α denote the probability that a hire

is a referral. α is given by

α =
ω(1−GR(q∗))

ω(1−GR(q∗)) + (1− ω)(1−GE(q∗))
.

Hence, the probability that hire i is nonwhite is given by

P (rhi = N) = απv(i) + (1− α)π̄.

Note that for an employer where πv(i) < π̄, the nonwhite share of hires is decreasing in the referral

share of hires, α.

Similarly, the probability that a successful hire for vacancy i is nonwhite is equal to α′πv(i)+(1−
α′)π̄, where α′ is the probability that a successful hire is a referral. In steady state, the nonwhite

share of incumbent employees (πv(i)) is equal to the nonwhite share of the external market (π̄).

Finally, we allow firms to adjust the precision of the productivity signals they receive in the

referral market so that signal precision hE = 1
σ2
E

is a function investment, cp.
8 We assume that these

costs are fixed relative to a firm’s number of vacancies n. Hence, larger firms, or those with more

vacancies, invest more in screening precision and have a lower value of hE . While this assumption

is not essential to generating the key predictions of the model, we include it to match the stylized

fact that large employers use more formal recruiting and screening methods and find a smaller

share of their hires via referral (Holzer, 1987a; Marsden, 1994; Rebien et al., 2020). Morgan and

Várdy (2009) show that if the firm is sufficiently selective (meaning q∗ is sufficiently large), then

an increase in a group’s signal precision will increase the group’s share of hires.9

We test four predictions about the composition of hires that derive from this framework. Two

predictions follow from our assumptions that the costs of improving signal precision for external

market candidates is fixed (and hence large firms hire a smaller share of their workers via referral)

and referral networks are segregated:

1) The share of hires made via referral is declining in employer size.

2) The nonwhite share of referral hires is increasing in the nonwhite share of incumbent employ-

ees.

The next two predictions relate to how an employer’s racial composition of hires varies over

time and with employer size, as given by n. In particular, the composition of an employer’s hires

moves closer to that of the external market as either cumulative hires or total vacancies increase:

8Galenianos (2013) and Miller (2017) also allow the firm to control the precision of signals for external market
candidates at some cost.

9There are alternative potential reasons that large employers are less likely to hire via referral that we do not
model here. Small employers may be more risk averse. The arrival rate of referral candidates may be declining in
employer size if, for example, the referral networks of coworkers are increasingly redundant.
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3) The nonwhite share of hires converges to π̄ as cumulative hires increases.

4) The nonwhite share of hires converges to π̄ as employer size increases.

For employers with white founders, the expected nonwhite share of hires is increasing in cu-

mulative hires and employer size.10 For employers with nonwhite founders, the expected nonwhite

share of hires is decreasing in cumulative hires and employer size.

2.2 Dismissal Rates

An additional four predictions follow from our assumption that the firm can screen referral candi-

dates with more precision than external market candidates. Morgan and Várdy (2009) show that

the group with lower screening precision is dismissed at higher rates. This prediction is standard

in the literature (Brown et al., 2016; Topa, 2019). Moreover, this difference in dismissal rates

diminishes over the job spell as the firm learns about employee productivity. This prediction is

particularly stark in our model, where all employees with θ = 1 are retained forever. However,

the same prediction holds in more general models where productivity is continuous or employee

productivity is revealed more gradually.

5) Referral hires have lower turnover rates than external market hires.

6) The referral turnover advantage is decreasing in job spell tenure.

7) Within-employer racial differences in dismissal rates are declining in cumulative hires and

employer size.

8) Conditional on cumulative hires and employer size, racial differences in dismissal rates are

decreasing in job spell tenure.

For employers with white founders, expected dismissal rates are higher for nonwhite hires than

white hires. That is because white hires are more likely to be hired via referral, while the opposite

is true for employers with nonwhite founders.

3 Context and Data

Like the United States, Brazil’s labor market exhibits significant racial disparities in wages and

segregation in employment (Hirata and Soares, 2020; Gerard et al., forthcoming). However, Brazil

has few regulations that protect workers against employment discrimination in the private sector

10The prediction for employer size is consistent with the literature that examines the effects of formal screening
devices on hiring outcomes, including the racial composition of hires. Autor and Scarborough (2008) show that
the introduction of job testing at a large retail firm did not reduce minority hiring despite minorities performing
significantly worse on the test and generated productivity gains for both minority and nonminority hires. Holzer et
al. (2006) and Wozniak (2015) argue that the use of criminal background checks and drug tests increases Black hiring
by providing information that is perceived to be more relevant for Black candidates.
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on the basis of race (Machado et al., 2019). Therefore, the differences we show in hiring patterns

by race are unlikely to be shaped by regulatory pressure and instead reflect market or social

institutions. We conduct our analysis using administrative-linked employer-employee data from

Brazil: the Relação Anual de Informações Sociais (RAIS), which include a remarkable amount of

detail on the characteristics of both workers and their employment contracts.

3.1 Legal and Social Context

Brazil was founded as a race-based slave society and has persistent racial disparities across many

socioeconomic outcomes. For many decades after the end of slavery, Brazil maintained a national

myth that it was a “racial democracy” in which racial disparities were incidental and transitory

(Fiola, 1990). Brazil did not construct explicitly racist legal institutions equivalent to the Jim Crow

era in the United States, did not prohibit racial intermarriage, and did not operate under a genetic

theory of racial superiority (Daniel, 2010). Perhaps as a result, the government has not adopted

systematic affirmative action or equal opportunity policies that apply to the private sector.11

Given this history, it is not surprising that the sociology of race is also very different in Brazil

than the United States. In Brazil, race is associated with skin tone and not so much a categorical

trait fixed through inheritance. As a result, there is much more ambiguity and subjectivity in

racial classification, which affects how race is measured in survey and administrative data. In

official statistics, and in both of our main data sources, there are five main racial categories: branco

(white), preto (Black), pardo (brown), amarelo (yellow), and indigena (indigenous). However, the

main axis of racial disparity is between the branco and the preto and pardo populations, whom

combined make up about 99 percent of the population. Therefore, like Cornwell et al. (2017),

Hirata and Soares (2020), and Gerard et al. (forthcoming), we follow Telles (2004) in combining

pardo and preto into a single “nonwhite” category and focus on comparing outcomes for white and

nonwhite workers.

Brazil’s labor markets are highly regulated in ways that affect our analysis. Workers on regular

contracts have constitutionally guaranteed employment protection that kicks in after a 90-day

probationary period. If they terminate a worker after 90 days, firms must pay a fine proportional

to a workers’ completed tenure. Before that, they can fire workers at will. The presence of these

termination costs affects firm’s hiring decisions and the manner by which they evaluate workers

during the probationary period. Arnold and Bernstein (2021) show that firing spikes at the 90-

day tenure threshold, suggesting firms do in fact use the 90-day window to continue screening

workers before committing to a permanent employment relationship. We take advantage of this

labor market feature when testing model predictions for dismissal rates by referral status and race.

Brazil also has a large informal labor market. For us, the key distinction is between formal labor

market contracts, which will appear in the administrative data, and informal contracts, which will

not. Over the period of our study, the informal sector accounts for between 40 and 60 percent of

11In recent years, some state and municipal programs have adopted affirmative action policies, and some universities
have begun to impose racial quotas in admissions (Francis and Tannuri-Pianto, 2013).
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total employment, with the share declining over time. It is not uncommon for firms to employ some

workers on formal contracts and others on informal contracts (Haanwinckel and Soares, 2020).

To provide more context, we summarize data from the Pesquina Nacional for Amostra de

Domicilios (PNAD) between 2003 and 2015. Our discussion of summary statistics from the PNAD

mirrors that of Gerard et al. (forthcoming). The PNAD is an annual, nationally representative

household survey that collects information on labor market outcomes for both formal and informal

workers. We limit to men and women aged 18–65. Statistics by race and gender are reported in

Table 1.

As shown in Table 1, about 48 percent of working-age Brazilian men and women are white, 43

percent are brown or mixed race, and 8 percent are Black. This paper focuses on private sector

employment. Thirty-nine percent and 21 percent of men and women work in the private sector,

excluding the self-employed. These rates are similar across racial groups, though more variable

among women. Unemployment rates are 25–30 percent higher for nonwhite men and women.

We next compare entrepreneurship rates by racial group. We define entrepreneurs as those who

self-report running a formal or informal business with at least one paid employee. Overall, 3.0

percent of men and 1.6 percent of women are entrepreneurs. Entrepreneurship rates are more than

twice as high among whites. For example, 4.1 percent of white men are entrepreneurs, while 2.1

percent and 1.8 percent of brown and Black men are entrepreneurs.

Among private sector employees, white men and women have more years and education and

receive wages that are 20–30 log points higher than wages received by nonwhite men and women.12

About 80 percent of private sector employees report having a valid “carteira de trabalho,” which

indicates that they are employed in the formal sector and hence are included in the RAIS data.

Rates of formality are similar across racial groups.

3.2 RAIS Employer-Employee Data

Our analysis is focused on an extract of the RAIS data over the years 2003–2017. RAIS is a

collection of administrative records reported by individual business establishments to the Brazilian

labor ministry (Ministerio do Trabalho — MTE) for the primary purpose of administering various

social security programs.

Each record captures the details of an employment contract between a worker and an establish-

ment during a given year. The recorded details include the worker’s race, education, and gender

as reported by the employer. The data also record contract-specific information, including av-

erage monthly earnings over the year, occupation, the date of hire, and, for jobs that end, the

date and cause of separation. We distinguish between employee-initiated separations (“quits”) and

employer-initiated separations (“dismissals”). The data include variables that identify both the

individual establishment where an employee works and, separately, the firm or enterprise that owns

the establishment.

12Gerard et al. (forthcoming) find that controlling for region, year, education, and experience reduces the wage
gap between white and nonwhite private sector workers to 11–13 percent.
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Table 2 shows significant racial disparities in wages. We limit the sample to worker-firm-year

observations for men and women aged 18–65 on private sector, indeterminate-length contracts

for at least 30 hours per week. We report data separately for all worker-firm-year observations,

recently hired workers (the first year of a job spell), and recently hired workers at entrant firms.13

Within each category, we also compare characteristics of white and nonwhite workers. The full

data are composed of 688 million job-year observations, of which 36.5 percent are for nonwhite

workers. There is a 20 log point (22 percent) raw wage gap between white and nonwhite workers.14

This may partially be explained by differences in characteristics: white workers are 7.3 percentage

points more likely to be college graduates and 0.9 years older, on average. Recently hired workers

are more likely to be nonwhite. The raw racial wage gap among new hires, however, is smaller than

the overall gap, at 12.5 log points (13 percent). Racial differences between recently hired workers

are not significantly different when we limit the sample to entrant firms.

We must address a key issue in how race is recorded in RAIS. Cornwell et al. (2017) document

that a nontrivial number of workers have different races reported by different employers in RAIS.

This is possible because when a worker changes jobs, her new employer makes an independent record

of their demographic characteristics. Cornwell et al. (2017) show that changes in reported race are

not independent of residual changes in earnings and are not explained as simple misreporting. To

address this issue, we identify the race for each individual using their modal reported race across

all contract-years for which they appear in the data.

3.3 CNPJ Ownership Data

In one approach to inferring the race of a firm’s founder, we follow Dias and Rocha (2021) and use

publicly available data on firm ownership from the federal registry of firms, the Cadastro Nacional

de Pessoa Juridica (CNPJ), maintained by the Receita Federal do Brazil.

The data report all individual and corporate owners with any stake in a firm. The publicly

available data on firm ownership is limited to firms with more than one legal owner. For all

individuals, the data include either the individual tax identifier or a combination of name and a

subset of the tax identifier. We use this identifying information to match individuals to the RAIS

data. Hence, for all individual owners included in the CNPJ with some formal sector job spell from

2003 to 2017, we can identify the owner’s race. We merge ownership data to firms in the RAIS

data using the unique CNPJ firm identifier.

4 Testing Model Predictions

In this section we test the model predictions described in Section 2. In Section 4.1 we describe and

implement tests that evaluate whether referral effects on hiring outcomes are declining in employer

13We describe how we identify entrant firms in more detail in Section 4.2.
14We compute an hourly wage by deflating average monthly earnings by the product of contracted weekly hours

and average weeks per month.
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size and whether referral effects are larger for incumbent employees and connected job seekers of

the same race. In Section 4.2 we test whether the racial composition of hires at firms with white

and nonwhite founders converge as cumulative hires and employer size increase. In Section 4.3 we

test predictions for differences in dismissal rates between referred and nonreferred hires. In Section

4.4 we test predictions for dismissal rates by race of hire and employer characteristics.

4.1 Empirical Model of Referral Effects

If referrals are an important hiring channel, we should observe that firms are more likely to hire

job seekers with a social connection to one of their incumbent employees. Conversely, job seekers

should be more likely to move into firms where they have a social connection. Following Eliason et

al. (2020), we evaluate the importance of referral hiring by modeling dyads that pair workers who

change jobs from one year to the next with a set of potential destination establishments. In the

model, i denotes a worker who is observed to separate from establishment j. The binary outcome

variable Pijk = 1 if i moves from origin establishment j to potential destination k. The variable of

interest Cijk = 1 if i has a social connection to some incumbent employee at k and is 0 otherwise.15

Our basic specification is a linear probability model for Pijk:

Pijk = αjk +Xijβ + λCijk + εijk, (1)

where αjk are fixed effects for employer origin-destination pairs. The parameter λ measures the

increase in the probability that firm k hires a worker from origin j when that worker has a social

connection to one of k’s incumbent employees.

We measure social connections, Cijk, using information on whether two workers have been

coworkers in the past. Specifically, two workers are coworkers in our data if they were employed in

the same establishment and the same occupation at the same time.16

4.1.1 Identification of Referral Effects

We use a novel combination of strategies to identify a referral effect in hiring from our information

on past coworkers. In Equation (1), the referral effect, λ, is identified under the assumption that

coworker connections are random conditional on the employer origin-destination pairs. It therefore

allows for arbitrary heterogeneity in the probability that k will hire a worker from j. The identifying

assumption will be violated if it is not the connection per se, but instead something about the shared

work history with an incumbent that makes k more likely to hire the linked worker. For example,

if a restaurant manager hires a cook from another restaurant and learns they are well-trained in a

particular type of cuisine, they may be more likely to hire another cook from that restaurant later.

15We consider all workers who change jobs when constructing dyads for the analysis reported in this section. In
Appendix B.2 we report results restricted to transitions involving workers from mass displacement events.

16We use eight top-level occupation codes from the 2002 vintage of Brazil’s occupation classification system, the
Código Brasileiro de Ocupações (CBO-2002). Following Eliason et al. (2020), we restrict attention to coworking
relationships in plants with fewer than 100 employees. This restriction both helps to manage the size of the resulting
data and to focus on environments where coworkers are likely to know one another.
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To address this concern, we pursue a complementary identification strategy, comparing pairs

of workers who worked together in the past with pairs whom we call placebo coworkers: pairs who

have held the same job, but not at the same time. In our data, we observe the months a worker

is employed in any job. For any two workers who hold the same job in our data, we measure

the number of months their employments spells overlap. When the pair were true coworkers, the

overlap measure is positive. When they were not actual coworkers, the overlap is negative and

measures the number of months between their employment spells. We define placebo coworkers as

those pairs of workers with overlap between −12 months and 0 months. We can then identify the

connection effect on any outcome by comparing workers with true coworker links to the hiring firm

and those with placebo links.

Figure 1 illustrates the contrast between true coworkers and placebo coworkers. The vertical

axis measures the hiring share across dyads (multiplied by 100) restricted to those where either

a true or placebo coworker link is present. The figure captures three findings relevant to this

identification strategy. First, the discontinuous jump in the hiring share—around a 50 percent

increase—between overlap values of 0 and 1 confirms that true coworking relationships have an

effect on the likelihood of hiring beyond what can be explained by two workers having similar

employment histories. Second, the hiring share has a strong positive gradient when overlap is

positive but is flat when overlap is negative. This suggests that the relevance of actual coworking

relationships to hiring outcomes is increasing in the amount of exposure two workers have to one

another. Finally, the average value of the hire share is around 0.1 across all dyads (including those

for which there is neither a true nor a placebo connection). The average is double that, around 0.2,

for placebo connections, suggesting the placebo connections do in fact capture information relevant

to the hiring outcome.17

Our augmented specification incorporating placebo coworker links is

Pijk = αjk +Xijβ + λCijk + λ∗Aijk + εijk, (2)

where Aijk = 1 if there is either a true or a placebo connection between worker i and an incumbent

worker at k. Note that most dyads do not involve any connection, either true or placebo, so λ∗

and λ can both be identified along with a constant term. However, we are primarily interested in

λ, which measures the increase in hiring associated with a true coworker connection relative to a

placebo connection.

4.1.2 Data for the Referral Analysis

The results in this section support the key assumptions of our model. First, we document very

strong referral effects that operate through past coworker connections. Second, our estimated

17Since our sample is based on all workers who change jobs, one might worry it is biased toward workers with
especially productive social connections or toward workers employed in bad matches relative to their outside options.
In Section B.2 we report the results for workers who separated during mass displacement events and find no evidence
that these forms of bias are driving our results.
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referrals effects are almost entirely driven by coworker pairs who share the same race. Finally,

referral effects are declining in the size of destination establishments.

We estimate referral effects using data covering all of Brazil between 2013 and 2017.

Table 3 describes the sample, which is composed of 303,338,866 dyads.18 Just 0.082 percent

of dyads capture cases where worker i is hired by k. The transitioning worker has a true linked

coworker connection in 4.1 percent of dyads. We define placebo worker links as described above.

8.4 percent of observations have either a true link or a placebo link. We report the size of the

potential destination establishment in three groups. The majority of dyads (62.6 percent) involve

potential destination firms in the smallest size group (1–99 workers). Of the remaining dyads,

21.7 percent involve potential destinations with 100–499 workers, and 18.9 percent with 500 or

more workers. The underlying transitions cover 1,353,787 hired workers (column 2) connected

to 9,216,640 incumbents (column 3). The shares of hired workers who are white and male are

smaller than in the population overall, at 0.320 and 0.559, respectively. These differences reflect

the nonrandomness in who changes jobs. The demographic characteristics of connected incumbent

workers are closer to the population of all workers. Note that the incumbents in column 3 measure

incumbents from true coworker connections only and not from placebo links.

4.1.3 Baseline Referral Effects

Columns 1, 2, and 3 of Table 4 report estimates of the effect of real coworker links, λ under different

identifying assumptions. Column 1 reports estimates of Equation (1), which includes establishment

pair effects, but does not use the placebo link contrast, comparable to the main specification in

Eliason et al. (2020). Under this model, we estimate λ =0.182, which is more than double the

baseline value of 0.084 percent. In column 2, we eliminate establishment-pair effects (though we

still control for separate origin and destination establishment effects) and include a control for

“Any Link.” In this specification, λ measures the true referral effect relative to observations with a

placebo link. With this specification, λ =0.222. The coefficient for “Any Link” measures the effect

of placebo links and is identified relative to those dyads where there is neither a true coworker

connection nor a placebo connection. Placebo links are associated with an increase in hiring of

0.097 percentage points; doubling the baseline.

Column 3 reports our preferred specification, based on Equation (2), which uses both iden-

tification strategies. Under that model, the presence of a true coworker link increases hiring by

0.117 percentage points, which is 1.4 times the baseline mean. We also find a significant effect

from placebo links, which increase hiring by 0.066 percentage points. Taken as a whole, our results

support a substantial role for coworker links in hiring regardless of the specification. However, the

data also show that firms are disposed to hire workers who have been employed in the same place

18Like Eliason et al. (2020), we restrict attention to jk pairs such that an incumbent worker in establishment k
has a connection to a job mover in j. This restriction is without loss of generality since it is based on predetermined
coworker relationships. In any case, λ is only identified from pairs of firms for which there is variation in the presence
of a coworker link and in the outcome.
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as one of their incumbents, even when they do not know each other.19

4.1.4 There Is Racial Homophily in Referral Hiring

We now examine heterogeneity by race. Our model is predicated on the assumption of homophily—

that referrals are much more likely between workers of the same race. While homophily is well-

established in the literature, we document it in the Brazilian labor market. The empirical model

investigates four possible pairings: nonwhite hired worker linked to a nonwhite incumbent; nonwhite

hire linked to white incumbent, and so on. We interact indicators for these pairings with the

indicator for true coworker links and with a variable indicating either a true or placebo link.

The omitted category corresponds to dyads where there is neither a placebo nor a true coworker

connection.20

Coworker effects are between seven and nine times stronger when coworkers are of the same

race. For dyads in which a nonwhite job seeker is linked to a nonwhite incumbent, a true connection

increases the hiring probability by 0.192, which is a 64 percent increase relative to the overall effect

from column 3. When both workers are white, the coworker effect is 0.136. By contrast, the

estimated effects are an order of magnitude smaller when the coworkers are of different races; just

0.025 when a nonwhite job seeker is connected to a white incumbent and 0.020 in the opposite case.

These results support our premise that referrals are far more common between members of the same

race. Moreover, because white and nonwhite workers tend to work in different places, same-race

links are much more common, suggesting that our results understate the role of homophily in

referral hiring.

Figure 2 illustrates the relationship between race match and hiring using more detailed in-

formation on overlap. As in Figure 1, overlap measures the number of months a job seeker was

employed in the same prior job as the linked incumbent. Negative values indicate the number of

months between job spells. The discontinuity between nonpositive and positive levels of overlap

shows the importance of actual social interactions in hiring. The largest discontinuities are for

nonwhite/nonwhite and white/white coworker pairs. The data support a mild role for social in-

teractions where white job seekers are linked to nonwhite incumbents, but these are much smaller.

19Section B.2 describes estimates of the same models on dyads for workers displaced from their origin employer. The
results in the displaced workers sample are qualitatively identical, and very similar quantitatively, albeit marginally
smaller—consistent with the arguments in Cingano and Rosolia (2012) and Caldwell and Harmon (2019) that some
workers are drawn to change jobs because of the quality of their social networks. If this bias is indeed present, it has
no economically relevant implications for the results in this section.

20More formally, we estimate an extension of Equation (2):

Pijk = αjk +Xijβ +
[
λN,NM

N,N
ijk + λW,NM

W,N
ijk + λN,WMN,W

ijk + λW,WMW,W
ijk

]
Cijk

+
[
λ∗
N,NM

N,N
ijk + λ∗

W,NM
W,N
ijk + λ∗

N,WMN,W
ijk + λ∗

W,WMW,W
ijk

]
Aijk + εijk.

The indicator MW,N
ijk takes a value of one when the hired worker, i, is white and the incumbent worker to whom they

are connected in firm k is nonwhite. The coefficient λW,N measures the strength of the referral effect for this type of
pairing relative to the value for placebo connections. The other indicators and coefficients are defined and interpreted
similarly. As in (2), Aijk indicates the presence of any link, either real or placebo.

17



While it is not directly relevant for our analysis of referrals, for negative values of overlap there is

still a large hiring effect for nonwhite coworker pairs. One explanation is that firms associate the

quality of their nonwhite workers with their prior employers and are more likely to hire nonwhite

workers when they come from firms that have provided other successful workers in the past.

4.1.5 Referral Hiring Is Declining in Employer Size

Finally, we assess the relationship between referral use and employer size. Figure 3 is consistent

with our assumption that large firms are less likely to use referrals. The figure plots referral effects

estimated from a version of (2) that allows for heterogeneity according to the size of the hiring

job.21 The plotted effects measure the proportional increase in the probability a worker is hired

when a linked coworker is present. With one exception, the effect of a true coworker link effect

is monotonically decreasing. In establishments with fewer than four workers, a true coworker link

increases the hiring probability by a factor of 2.52 relative to the mean for that size group. For

firms with over 1,000 workers, the estimated effect is an increase of just 0.7 times the mean.

These findings are consistent with larger establishments having more formalized human re-

sources (HR) practices. This relationship is corroborated in the Brazilian wave of the World

Management Survey (WMS), which scores firms on their adoption of formal management prac-

tices across several domains, including people management, operations, and performance targeting

(Bloom et al., 2014). Appendix Figure B.1 shows that the adoption of formal people management

and overall management practices are increasing in firm size.22 The WMS for Brazil only covers a

small sample (815 observations) on medium-sized manufacturing firms. However, we can provide

complementary evidence that the adoption of formal HR management patterns is increasing in

employer size more generally. For all firms and establishments in RAIS, we proxy for HR formality

using the share of an establishment’s employees in HR-related occupations.23 Appendix Figure B.2

plots the HR share of an employer’s workforce by employer size, where employers are defined at

either the establishment or firm level. The relationship is increasing for either measure.

21We estimate

Pijk = αjk +Xijβ +

[
λ+

∑
s

δs1(Sk = s)

]
Cijk.+

[
λ∗ +

∑
s

δ∗s1(Sk = s)

]
Aijk + εijk,

where Sk indicates the size class of destination plant k. We report the effect magnitude as
(
λ̂+ δ̂s

)
/P s, with P s

measuring the average outcome for dyads with destinations in size class s. The inclusion of Aijk means the effects
are identified relative to the value for placebo connections.

22Cornwell et al. (forthcoming) show that the positive relationship between employer size and the WMS people
management score continues to hold when conditioning on other observable characteristics.

23This includes the following occupations: administrador (administrator), diretor de recursos humanos (human
resources director), gerente de recursos humanos (human resources manager), and gerente de departamento pessoal
(personal department manager).
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4.2 Racial Composition of Hires Converges with Cumulative Hires and Size

We predict that the racial composition of new hires for an employer will be correlated with the race

of the founder, but this correlation is decreasing in the employer’s (a) cumulative number of hires

and (b) size (n from the model). As the employer’s cumulative number of hires and size increases,

new hires are further removed from the founder’s referral network. Together, these predictions

imply that, in the cross-section, the nonwhite share of hires is increasing in cumulative hires for

firms with white founders and is decreasing in cumulative hires for firms with nonwhite founders.

We first test for this pattern in the cross-section and then test whether the pattern holds within

firms and between firms with more or fewer total hires, which roughly corresponds to predictions

(a) and (b).

We take all firms that we observe as entrants in the RAIS data. For multiestablishment firms,

we take the first establishment observed for the firm, if we observe that establishment’s year of

entry. We refer to these establishments and single-plant firms as headquarter (HQ) establishments

(we refer to HQ establishments and firms interchangeably for the remainder of the paper). We

further restrict to establishments that enter the RAIS data with 1–49 employees as of December 31

in its year of entry. We are left with a sample of about 2.3 million HQ establishments. Appendix

Table B.3 provides descriptive statistics for these entrant HQ establishments.24

We characterize founder race in two ways. First, following standard practice in the entrepreneur-

ship literature (Kerr and Kerr, 2017; Azoulay et al., 2020; Babina, 2020; Bernstein et al., 2021),

we infer the race of a firm’s founder using the race of the highest paid manager in the HQ estab-

lishment at entry.25 Second, when possible, we infer the race of a firm’s founder using the racial

composition of ownership. We classify firms as having a white founder when we can identify more

than 50 percent of ownership as white and as having a nonwhite founder when we can identify

more than 50 percent of ownership as nonwhite.26 Using either classification, we find that entrant

firms with white and nonwhite founders are similar in terms of their size and survival rates (see

Appendix Table B.3).

We then ask how the composition of new hires in subsequent years evolves with the establish-

ment’s cumulative number of hires. For firms with a white founder, we predict the nonwhite share

of hires to be increasing in cumulative hires. For firms with a nonwhite founder, we predict the

nonwhite share of hires to be decreasing in cumulative hires. We predict that the nonwhite share

of hires for HQ establishments of firms with white and nonwhite founders will converge as their

24Our definition of entrant firms includes preexisting informal firms that formalize, a category that we are unable
to separately identify.

25For HQ establishments with no employee with a manager occupation code, we take the highest paid employee.
If multiple people have the same exact wage at the top of the distribution, we pick one randomly. Using tax data
on S corporations in the United States, Azoulay et al. (2020) find 90 percent of owner-workers are among the top
three earners in the firm during the first year. Note that while this procedure may not identify the relevant founder
in some cases, the race of the individual identified by this procedure is likely highly correlated with the race of the
founder.

26Given the racial disparities reported in household survey data as described in Section 3, the first method may
inflate the nonwhite share of founders but covers a substantially larger set of firms. Note that in calculating the white
and nonwhite share of ownership, we include owners that we cannot match to the RAIS data in the denominator.
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cumulative hires increase so that when cumulative hires is sufficiently high, the racial composition

of hires is not related to the race of the founder.

We estimate regression models of the form

log(E(NONWHITEit|·)) =
∑
n

∑
r

ηn,r × 1{N(J,t)=n} × 1{R(J)=r}

+ τt + µm(J(i,t)) + ωo(i,t) + εit (3)

via Poisson quasi maximum likelihood (Correia et al., 2020), where each observation is a new hire, i

indexes workers, t indexes time, and J(i, t) indexes the establishment.27 We limit to hires made after

the year of the firm’s entry. NONWHITEit is an indicator for whether the new hire is nonwhite. τt

are year fixed effects, µm(J(i,t)) are microregion fixed effects (which we use to approximate local labor

markets), and ωo(i,t) are fixed effects for two-digit occupation. R(J) categorizes establishments

by founder race. N(J, t) indexes an employer’s cumulative hires to date. We group hires into

increments of five: hires 1–5, 6–10, 11–15, and so on. The omitted category is the first increment

of hires for establishments with white founders. The ηn,r coefficients have a natural proportional

interpretation: they measure the proportional increase in the probability that a hire is nonwhite

relative to the omitted category.

We plot the coefficient estimates in Panel A of Figure 4. Here we infer founder race from the

race of the top-paid manager. (We plot analogous results where we infer founder race using the

racial composition of ownership in Appendix Figure B.4; the results are similar.) The pattern fits

our predictions. For early hires, the racial composition of new hires is closely tied to founder race.

For the first few hires, in Panel A the probability that the hire is nonwhite is about 35 log points

higher at firms with a nonwhite founder compared to firms with a white founder. This gap declines

steeply in cumulative hires. By the 50th hire, this gap declines to about 15 log points, and 5 log

points by the 200th hire. By the 350th hire, the racial composition of hires at firms with white

and nonwhite founders is statistically indistinguishable. Interestingly, the convergence in racial

composition is driven entirely by firms with white founders. Among firms with nonwhite founders,

the relationship between cumulative hires and the racial composition of new hires is essentially flat.

The pattern illustrated in Panel A of Figure 4 may both reflect the within-firm evolution in the

racial composition of hires and differences in composition for firms with more or fewer total hires.

The model predicts that both channels will contribute to the cross-sectional relationship. We next

distinguish between these channels.

We test for whether the nonwhite share of hires varies as predicted both within establishments

and between establishments. We estimate Equation (3) but allow the η coefficients to vary with a

27Note that the fixed effects Poisson estimator only invokes the conditional mean assumption in (1) and a standard
strict exogeneity assumption. It is well suited to binary outcomes and does not require that the data follow a Poisson
distribution. See Wooldridge (1999). We have also estimated λ under the assumptions of a linear probability model,
as in Eliason et al. (2020), and obtain similar results.
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firm’s total observed hires. Specifically, we estimate

log(E(NONWHITEit|·)) =
∑
s

∑
n

∑
r

ηs,n,r × 1{S(J)=s} × 1{N(J,t)=n} × 1{R(J)=r}

+ τt + µm(J(i,t)) + ωo(i,t) + εit, (4)

where S(J) categorizes firms by their total observed hires: 50–249, 250–499, and 500+. N(J, t) now

groups hires into increments of 10. We restrict estimation to hires 1–50 for firms with 50–249 total

observed hires, hires 1–250 for firms with 250–499 total observed hires, and hires 1–500 for firms

with 500+ total observed hires. This restriction maintains a balanced sample of firms contributing

to the estimation of ηs,n,r coefficients.

The results are presented in Panel B of Figure 4. For establishments with white founders, the

pattern of coefficients is similar to what we found in Figure 4, though the magnitude of change is

smaller. The relationship between an establishment’s nonwhite share of hires and cumulative hires

is increasing and concave. By the 200th hire, the probability that the hire is nonwhite is about 20

log points larger than that same probability for the first hire. For establishments with nonwhite

founders, the relationship is negative rather than flat, but the magnitude of change is smaller than

that for establishments with white founders.

Panel B of Figure 4 also illustrates clear between-firm differences by total hires. Among firms

with white founders, the nonwhite share of hires is increasing in total observed hires for all values of

cumulative hires. For initial hires, the likelihood that a hire is nonwhite is about 8 percent greater

at firms with 250 or more observed hires than at firms with 50–249 observed hires. This pattern is

consistent with the premise that larger firms hire a smaller share of their workforce via referral.

The pattern is somewhat different for firms with nonwhite founders. For these firms, the racial

composition of initial hires is unrelated to firms’ total observed hires. For later hires, the nonwhite

share of hires is decreasing in total observed hires. As a result, the speed of convergence (as

measured by cumulative hires rather than time) is faster for firms with fewer observed hires. This

may reflect that new hires are slower to generate referrals at firms with more observed hires because,

for example, there is less time between hires at these firms.

We extend the analysis in three ways in the Appendix. First, we conduct an analogous exercise

for new establishments that are subsidiaries of existing firms. We characterize establishments by

the racial composition of the firm’s incumbent employees. The findings are similar (see Figure

B.6). Early on, establishments from firms with mostly white employees are more likely to hire

white workers than peer establishments from firms with mostly nonwhite employees. But these

differences disappear as the establishment’s cumulative hires increase.

The next two extensions examine whether the patterns documented here vary with other firm

characteristics. Motivated by Gerard et al. (forthcoming), who find that nonwhite workers are

underrepresented at high-paying firms, we estimate Equation (3) separately by firm pay premium

quintile, where we estimate pay premiums using the canonical two-way fixed effects model of Abowd

et al. (1999). We find similar patterns for low- and high-paying firms (see Appendix Figure B.7).
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Finally, we test for heterogeneity by the racial composition of the local labor market. We divide

firms into quintiles by the nonwhite share of hires in their microregion and estimate Equation (3)

separately by quintile. We find similar patterns for firms in local labor markets with large white

and nonwhite majorities (see Appendix Figure B.8).

4.3 Referral Hiring and Learning about Match Quality

A common explanation for why employers use referral networks in hiring is that they can obtain

more information about the match quality of potential referral hires (Simon and Warner, 1992;

Topa, 2019). A growing literature tests the empirical implications of this class of referral-based job

search models (Dustmann et al., 2016; Brown et al., 2016). These papers test whether, within a

firm, referral hires have lower turnover relative to nonreferral hires, and whether these differences

dissipate with tenure.

We first check whether connected hires have lower dismissal rates than nonconnected hires and

how differences in dismissal rates evolve with tenure. We estimate a discrete-time hazard model and

compare hazard rates within the same establishment and occupation for hires who are connected

and not connected to an incumbent employee at their time of hiring. We expand our job spells data

into a job spell by time period data set, where each observation represents a job spell and 15-day

tenure period, where periods are indexed by p.28

We estimate regression models of the form

log(E(DISMISSEDiJ(i,t)p|·)) =
∑
p

θpCONNECTEDiJ(i,t)1p + σp + τt + ωo(i,t) + ψJ(i,t) + εit, (5)

where DISMISSEDiJ(i,t)p is indicator for whether the establishment J(i, t) dismisses employee i

in tenure period p, CONNECTEDiJ(i,t)t is an indicator for whether hire i has a connection at

establishment J(i, t) at the time they are hired, and ψJ(i,t) are establishment fixed effects. We

limit estimation to establishment-by-occupation cells with at least one connected hire and one

nonconnected hire. The coefficients θp convey the differences in log dismissal hazard rates in

tenure period p between connected and nonconnected hires conditional on year, occupation, and

establishment fixed effects.

Panel A of Figure 5 plots dismissal rates by tenure for connected and nonconnected hires as

implied by Equation (5). There are two points to note. First, dismissal rates for nonconnected

hires exceed dismissal rates for connected hires at all depicted tenure levels. This is particularly

salient in the period running up to the end of the 90-day probationary period, where dismissal rates

spike. While both nonconnected and connected hires experience a sharp increase in dismissal rates,

the spike is markedly larger for nonconnected hires. Second, the gap in dismissal rates generally

dissipates over time following the 90-day spike, with much of the closing in the gap occurring after

about 250 days on the job.

28We are missing data on the specific day of separation for the years 2011–2013. For this reason, we exclude from
the analysis job spells that begin in 2009–2013.
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To provide additional evidence that referral hires are less likely to be dismissed, we compare

outcomes for connected hires and placebo connected hires as in Section 4.1. For each hire i at estab-

lishment J(i, t), we denote the maximum overlap in prior job spells across combinations of worker

i and incumbent workers at establishment J(i, t) by OVERLAPiJ(i,t). As discussed in Section 4.1,

a negative overlap between a pair of workers indicates that the two were not true coworkers, and

the value indicates the number of months between their job spells. In cases where hire i does not

share a prior job with any incumbent in establishment J(i, t), we set OVERLAPiJ(i,t) = −∞.

We focus on dismissals during the probationary period. We estimate regression models of the

form

log(E(DISMISSED-3Mit|·)) =
∑
k∈K

θk1OVERLAPiJ(i,t)∈k + τt + ωo(i,t) + ψJ(i,t) + εit, (6)

where DISMISSED-3Mit is an indicator for dismissal within three months of the hire date and K
categorizes OVERLAPiJ(i,t) values as follows: −12 to −9, −8 to −6, −5 to −3, −2 to 0, 1 to 3,

4 to 6, 7 to 9, 10 to 12, 13 to 15, 16 to 18, and > 18. The omitted category is < −12 (including

−∞). Hence, the θk coefficients identify the dismissal rates of placebo connected and connected

hires as a function of overlap relative to hires who are neither.

Placebo connected hires are less likely to be dismissed than hires who are neither connected

nor placebo connected. Among placebo connected hires, the θk coefficients are consistently around

–1.25, indicating that hires who are neither connected nor placebo connected are about three times

more likely to be dismissed during the probationary period than their placebo connected peers.

Among placebo connected hires, the relationship between overlap and dismissal rates is flat. There

is a clear trend where overlap is greater than zero; among connected hires, dismissal rates are

decreasing in the length of time their prior job spell overlapped with an incumbent employee.

Note that we only capture one type of social connection in our data, previous coworkers, and

turnover patterns may vary with the type of connection. Nonetheless, we interpret this striking

pattern as evidence that the referral hires have lower dismissal rates than comparable nonreferral

hires.

Overall, our findings are consistent with job search models where referral networks provide

information to employers about a job candidate’s match quality. If indeed the hiring dynamics

documented in Section 4.2 are driven by referral hiring, racial differences in dismissal rates for

recent hires favor hires of the same race as the establishment’s founder but are decreasing in an

establishment’s total number of hires.

4.4 Racial Disparities in Dismissal Rates Are Decreasing in Total Hires

We test whether within-firm racial differences in dismissal rates are decreasing in total hires. We

return to our sample of entrant firms and estimate regression models of the form

log(E(DISMISSED-3Mit|·)) = τt + ωo(i,t) + ψJ(i,t) + ψNWJ(i,t) + εit, (7)
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where ψJ(i,t) are firm fixed effects and ψNWJ(i,t) are firm by nonwhite fixed effects. Hence, ψNWJ(i,t) is

the firm-specific racial disparity in log three-month dismissal rates.

Figure 6 depicts the average of ψNWJ(i,t) as a function of a firm’s total observed hires and race of

founder. We limit to firms where we observe at least 20 hires and then take an average of ψNWJ(i,t)
across firms, weighting by each firm’s number of observed hires. At firms with 20–49 hires and

white founders, the three-month dismissal rate is about 18 percent higher for nonwhite hires. This

declines to a 5 percent gap at firms with 500 or more hires. By contrast, at firms with 20–49 hires

and nonwhite founders, the three-month dismissal rate is about 5 percent lower for nonwhite hires.

There is essentially no racial difference in dismissal rates at firms with nonwhite founders and 250

or more hires.29

If the pattern shown in Figure 6 is driven by the fact that racial differences in the referral share

of hires is diminishing with total hires, then the relationship between racial disparities in dismissal

rates and total hires should be muted with tenure. We test this by reestimating Equation (7) but

replacing the outcome with an indicator for dismissal in the first 18 months of the spell. We plot

the corresponding coefficients also in Figure 6. Reassuringly, we find that the relationship between

total hires and the racial disparity in 18-month dismissal rates is relatively flat.

5 Alternative Interpretations

We interpret the evidence presented in the previous section as consistent with the job search model

presented in Section 2. In this section we consider alternative interpretations of the patterns we

document.

5.1 Human Capital

One alternative explanation for our findings is that they are driven by differences between white

and nonwhite workers in human capital or preferences over occupations. Firms with white and

nonwhite founders may hire for positions that tend to be filled by nonwhite and white workers later

in the firm’s life cycle, respectively. Equation (3) includes fixed effects for two-digit occupation;

however, the positions that firms fill may vary in unobservable ways over the firm life cycle.

To assess this explanation, we examine how the occupational composition of hires varies over

the firm life cycle for firms with white and nonwhite founders. For each six -digit occupation, we

measure the nonwhite share of workers hired into that occupation, ω̄o. We then estimate models

analogous to Equation (3), replacing the outcome with ω̄o and replacing microregion fixed effects

with establishment fixed effects:

log(E(ω̄o(i,t)|·)) =
∑
n

∑
r

ηn,r × 1{N(J,t)=n} × 1{R(J)=r} + τt + ψJ(i,t) + εit. (8)

29Appendix Figure B.10 shows similar patterns for quits and all separations.
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Appendix Figure B.11 plots the ηn,r coefficient estimates. The value of ω̄o(i,t) is increasing

slightly over the firm’s life cycle. However, this is true for both firms with white and nonwhite

founders. Racial differences in human capital do not appear to explain our findings.

5.2 Taste-Based Discrimination

A second alternative explanation is that employers exhibit taste-based discrimination. Some estab-

lishments with white founders may prefer to employ white workers conditional on match produc-

tivity and are less likely to grow as a result. This could generate an increasing relationship between

cumulative hires and the probability that a hire is nonwhite, as documented in Section 4.2.

There are two patterns we show that are inconsistent with at least a standard employer-driven

taste-based discrimination model. First, the convergence in the racial composition of hires with

cumulative hires holds within establishment. A model where employer tastes over employee race are

fixed would not generate this result. Second, a standard taste-based discrimination model would

not generate the finding that there are racial differences in dismissal rates that dissipate with

cumulative hires. If racially biased employers set a lower threshold for dismissing hires from their

disfavored group, then a forward-looking employer would account for this preference at the hiring

stage and set a more demanding threshold for hiring job seekers from that group. It may be possible

to rationalize this pattern with a more complicated taste-based model where decision-makers who

make hiring and firing decisions are different and misaligned (Lehmann, 2013).

There is also a sense in which taste-based discrimination may play an implicit role in our

model. Incumbent employees have discretion over which job seekers to refer, and over which social

connections to form in the first place.

5.3 Worker Preferences

A third interpretation is that the patterns we show reflect job seeker preferences over workplace

characteristics. In particular, nonwhite job seekers prefer to not work at small or young employers

with white founders. To evaluate this alternative hypothesis, we build on the insight that, under

some assumptions, worker preferences over employers can be inferred from worker mobility patterns

(e.g., Sorkin, 2018).

There are now several approaches to constructing a revealed preference ranking of employers.

We use the poaching rank as developed by Bagger and Lentz (2018). The premise of the poaching

rank is that higher-ranked employers should hire relatively more workers from employment than

from unemployment. That is because poaching a worker from another employer indicates the

worker prefers the destination employer. The poaching index for establishment J is defined as the

share of all new hires who are poached from other employers:

pJ =
n(., J)

n(0, J) + n(., J)
, (9)

where n(., J) is the number of hires poached from other and n(0, J) hires from unemployment. The
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poaching rank of establishment J is a conversion of the poaching index into an ordinal ranking of

employers. We present more details on the construction of the poaching rank in Section B.1.

In Appendix B we examine how race-specific poaching indices vary with founder race and total

hires (see Appendix Figure B.12). We do not find evidence that nonwhite job seekers prefer to not

work at small or young employers with white founders.

5.4 Complementarities in Production

A fourth alternative explanation is that workers are more productive when their coworkers are of

the same race (Lang, 1986). Complementarities in production would naturally lead to workplace

segregation. The racial composition of hires could converge across firms if these complementarities

are stronger among early employees. Without productivity data, this explanation is difficult to rule

out. However, it is not clear why this mechanism would generate the racial differences in dismissal

rates that we observe.

5.5 Screening Ability

A fifth interpretation is that firms with white and nonwhite founders are better at screening white

and nonwhite job seekers, respectively, even when those job seekers are not referrals. This would

be consistent with suggestive evidence that managers are better at screening applicants who share

their racial or ethnic background (Giuliano et al., 2011; Åslund et al., 2014; Benson et al., 2019).30

This alternative story can match the findings that firms with white founders are more likely to

hire white employees than comparable firms with nonwhite founders and that firms with white and

nonwhite founders are more likely to dismiss their nonwhite and white hires, respectively.

This mechanism could also generate convergence between firms with white and nonwhite founders

if, for example, investments in formal HR practices or employer learning reduces the same-race ad-

vantage in screening ability.

We view this mechanism as similar to referral hiring in that they both posit that social (or

cultural) proximity affects screening ability. We focus on referral hiring because aspects of referral

hiring that are essential to the model examined here—that referral networks are racially segregated

and employers have additional information about the match quality of referral candidates—are

empirically supported in our setting and the broader literature. By contrast, the idea that managers

are better at screening same-race applicants and that this advantage diminishes as cumulative hires

increase is more speculative.

6 Implications for Racial Inequality

We have documented evidence that, on average, employers screen job seekers with more precision

when they share the founder’s racial background. This advantage in screening precision is declining

30Note, however, that this research generally cannot rule out that managers’ superior screening of applicants who
share their background is driven by referral hiring.
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in an employer’s cumulative hires and size. We also discuss in Section 3 that entrepreneurship rates

for white adults are twice as high as the same rates for nonwhite adults in Brazil.31 In combination

with our findings, this suggests that referral hiring will disadvantage nonwhite job seekers in the

aggregate by making it more difficult for them vacancies where they are well matched (for example,

see Bolte et al., 2020).32

In this section we argue that the dynamic effects of referral hiring, combined with racial dif-

ferences in entrepreneurship, can help explain three stylized facts about racial differences in labor

market outcomes. First, nonwhite workers are more likely to be dismissed by their employers than

white workers. Second, nonwhite workers have less seniority than their white coworkers, on average.

Third, nonwhite workers sort to larger employers than white workers.

6.1 Dismissal Rates

In our sample, 17.6 percent and 15.8 percent of nonwhite and white hires are dismissed within 90

days of their start date. In the United States, Black workers are more likely than white workers to

be laid off, fired, or discharged (Lang and Lehmann, 2012; Cavounidis et al., 2021). In the context

of our model, these racial differences in “involuntary” separations could be explained by the fact

that nonwhite or Black hires are less likely to be referral hires.

To assess whether referral hiring can explain aggregate differences in dismissal rates, we compare

dismissal rates in firms with white and nonwhite founders. We document in Section 4.4 that within

firms with white founders, white hires are less likely to be dismissed than nonwhite hires. The

opposite is true for firms with nonwhite founders, though the magnitude of racial differences in

dismissal rates are smaller. Here we conduct a similar but distinct exercise. While in Section

4.4 we measure within-firm gaps in dismissal rates, coinciding with our employer-level model and

model predictions, here we pool firms and combine both within-firm and between-firm variation in

dismissals.

We estimate the following model, separately for all entrant firms, firms with white founders and

firms with nonwhite founders:

log(E(DISMISSED-3Mit|·)) = τt + ωo(i,t) + βNONWHITEi + εit. (10)

Estimates for Equation (10) are presented in Panel A of Table 5. Columns 1–3 pool all entrant

firms, columns 4–6 limits to firms with white founders, and columns 7–9 limit to firms with nonwhite

founders. Columns 1, 4, and 7 include only year fixed effects as additional controls; columns 2, 5,

and 8 include year fixed effects and occupation fixed effects; and columns 3, 6, and 9 include year

31Racial disparities in entrepreneurship are not limited to Brazil. In the United States, about 13 percent of the
adult population was Black in 2012, while only 2 percent of businesses with at least one paid employee were Black
owned (Camara et al., 2019).

32Just as groups facing employer discrimination in Becker (1957) can avoid its ill effects on wages if the marginal
employer is not discriminatory, the degree that referral hiring affects racial inequality in labor market outcomes may
depend on the ability of nonwhite job seekers to sort to employers where they are socially connected and able to find
well-matched positions.
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fixed effects and education fixed effects. For all establishments pooled, nonwhite hires are dismissed

at an elevated rate. Without adjusting for job or worker characteristics (column 1), nonwhite hires

are about 8 percent more likely to be dismissed within three months. This declines to 4 percent or

8 percent with the inclusion of occupation or education fixed effects.

These differences are driven primarily by firms with white founders, where nonwhite hires

are 8–12 percent more likely to be dismissed, depending on the specification. By contrast, at

establishments with nonwhite founders, nonwhite hires are 1–4 percent more likely to be dismissed.

6.2 Seniority

Buhai et al. (2014) find that separation rates are decreasing and wages are increasing in seniority,

defined as worker’s tenure relative to the tenure of their colleagues. Our model as written does

not have substantive predictions for seniority because we ignore quits. However, the logic of the

model suggests that nonwhite employees at establishments with white founders will tend to have

less seniority than their white coworkers because they are hired later in an establishment’s life cycle.

Following Buhai et al. (2014), we define a worker’s seniority index as follows. Define qijt as the

number of workers in establishment j with tenure greater than or equal to tenure of worker i at

time t. Define njt as the total number of workers in establishment j at time t. The seniority index

is defined as

log rijt ≡ log njt − log qijt. (11)

We estimate the following linear model, separately for all entrant firms, firms with white

founders and firms with nonwhite founders:

log rijt = τt + ωo(i,t) + βNONWHITEi + ν log njt + εit. (12)

Estimates for Equation (12) are presented in Panel B of Table 5. Columns 1–3 pool all entrant

firms, columns 4–6 limit to firms with white founders, and columns 7–9 limit to firms with nonwhite

founders.

Overall, nonwhite employees have 4–5 percent less seniority than white employees. This is

driven by firms with white founders, where nonwhite employees have 9–10 percent less seniority.

At firms with nonwhite founders, nonwhite and white employees have similar seniority, on average.

6.3 Employer Size

Referral hiring can explain a striking pattern present in both Brazil and the United States that has

received little attention: nonwhite and Black workers sort to larger employers (Holzer, 1998; Miller,

2017). The sorting of nonwhite and Black workers to large employers is perhaps surprising given

that (1) large employers tend to pay more and employ more educated workers (Brown and Medoff,

1989) and (2) nonwhite workers tend to work at lower-paying firms, at least in Brazil (Gerard et

al., forthcoming). We show that other observable job characteristics cannot explain this sorting

pattern.
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To characterize the relationship between the racial composition of new hires and establishment

size, we estimate models of the form

log(E(NONWHITEit|·)) = σc(J(i,t)) + τt + µm(J(i,t)) + ωo(i,t) + εit, (13)

where σc(J(i,t)) are fixed effects for the establishment’s size category and ωo(i,t) are fixed effects for

combinations of occupation, industry, and worker education. Establishment size is measured as of

December 31 in the year of the hire.

The estimated σc(J(i,t)) coefficients for various specifications of Equation (13) are presented in

Figure 7. The omitted category is establishments with one to four employees. The first specification

includes only year fixed effects as additional explanatory variables. The coefficient of 0.044 for

establishments with five to nine employees indicates that the nonwhite share of hires is 4.4 log

points (4.5 percent) larger at establishments with five to nine employees relative to establishments

with one to four employees. Coefficients are monotonically increasing in establishment size. The

coefficient is 0.351 for establishments with 1,000 or more employees, indicating that the nonwhite

share of hires is 42 percent larger at these establishments relative to establishments with one to

four employees.

We increase the saturation of the model with each specification. The second specification in-

cludes microregion fixed effects, to little effect. Large establishments are not disproportionately

concentrated in local labor markets with large nonwhite populations. The third specification in-

cludes three-digit occupation by two-digit industry fixed effects. These fixed effects are rich charac-

terizations of jobs; they explain 52 percent of variation in starting log wages. Including occupation

by industry fixed effects reduces the magnitude of the size effects moderately. For example, the

coefficient for establishments with 1,000 or more employees declines from 0.351 to 0.249. However, a

robust size gradient remains. The fourth specification replaces occupation by industry fixed effects

with occupation by industry by worker education fixed effects, where worker education is divided

into three categories: less than high school education, high school graduate, and college graduate.

Incorporating education slightly increases the magnitude of the σc(J(i,t)) coefficients.

We conclude that nonwhite workers sort to larger establishments and this pattern cannot be ex-

plained by other job characteristics potentially correlated with size, including location, occupation,

industry, and educational requirements.

7 Conclusion

We present a simple job search model with referral hiring, test its predictions using administrative

data from Brazil, and consider its consequences for racial inequality. We emphasize the implications

of referral hiring for how the racial composition of an employer’s hires varies (a) with the race of

the founder, (b) over time, and (c) with the employer’s size. Among other predictions of the model,

we confirm that (a) firms with white and nonwhite founders are more likely to hire white and

nonwhite employees, (b) these differences disappear as establishments’ cumulative number of hires
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increases, (c) firms are less likely to dismiss recent hires of the same race as the founder, and (d)

racial differences in dismissal rates are also decreasing in an establishment’s cumulative number of

hires.

Given substantial racial disparities in entrepreneurship rates, the widespread practice of referral

hiring appears to disadvantage nonwhite workers (relative to white workers) in the aggregate and

to be a source of what sociologists refer to as “institutional discrimination” (Small and Pager,

2020). We show that referral hiring can help explain why nonwhite workers are more likely to be

dismissed from their jobs, have less seniority, and sort to larger employers. In particular, racial

differences in dismissal rates and seniority are driven by firms with white founders. Though we

cannot identify workers’ social connections directly, our findings suggest that, compared to their

white peers, nonwhite job seekers may be connected to fewer firms and connected to larger firms,

which tend to be less dependent on referral hiring. Though beyond the scope of this paper, a natural

open question is, What implications does the combination of referral hiring and racial differences

in entrepreneurship have for racial inequality in wages and employment rates?

We note two implications that our findings have for policy. First, our findings provide a novel

rationale for affirmative action policies. Over the course of a firm’s life cycle, the racial composition

of its hires converges to the composition of the external market. But this convergence is slow in

that few firms reach the scale where founder race no longer predicts a firm’s racial composition

of hires. Our findings suggest that a temporary affirmative action policy would accelerate this

process by incentivizing firms to hire workers from groups underrepresented at the firm relative to

the external market. Such an intervention would have short-run costs—for example, an increase

in dismissal rates or investments to improve the screening of external market candidates (Miller,

2017)—but would lead to persistent reductions to racial inequality in labor demand.

Second, our findings suggest that market frictions that affect the size distribution of firms

will have implications for racial inequality in the labor market (Restuccia and Rogerson, 2017).

For example, if small, productive firms are unable to expand to their efficient size due to some

resource misallocation, these firms are also less likely to reach the point of having a racially diverse

workforce. The logic of our findings suggests that the aggregate costs of misallocation will be

disproportionately borne by groups underrepresented among entrepreneurs. On the other hand,

dynamic markets with high firm turnover may also disadvantage groups underrepresented among

entrepreneurs if firms that reach the scale needed to employ a diverse workforce make up a small

share of the market.
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Figure 1
True Coworker Connections Relative to Placebo Connections

Note: This figure plots the average value of the hiring outcome, Pijk from in Equation (1) for observations where
there is overlap in the previous employment history of job seeker i and an incumbent worker at establishment k.
The horizontal axis measures the number of months that two workers overlapped in a previous job. When overlap
is negative, it measures the number of months that passed between the two workers’ spells. Note that the hiring
outcome is scaled up by 100 to reflect percentage point changes.
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Figure 2
Hiring Share by Coworker Overlap by Incumbent and Job Seeker Race

Note: This figure plots the average value of the hiring outcome in Equation (1) relative to job spell overlap. The
horizontal axis measures overlap, the number of months that two workers overlapped in a previous job. When
overlap is positive, the two workers were true coworkers for that number of months. When it is negative, it
measures the number of months that passed between the two workers’ spells. When reporting the race match, we
put the race of the job seeker first and the linked incumbent second. So “White / Nonwhite” indicates a white
job seeker is linked to a nonwhite incumbent at the destination.
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Figure 3
Referral Effects Decreasing in Establishment Size

Note: This figure plots point estimates of referral effects by destination establishment size from estimating the
equation in Note 21. The plotted coefficients represent the effect of a true link on hiring as a share of the average
hiring rate in dyads involving destinations in the reported size class.
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Figure 4
Nonwhite Share of Hires Converges with Cumulative Hires

(a) Pooled

(b) By Total Hires, Balanced

Note: This figure plots the relationship between the racial composition of a firm’s hires and its cumulative hires
to date. Panel A plots the ηn,r coefficient estimates from Equation (3), summarizing the relationship between a
firm’s racial composition of hires, its cumulative hires to date (n), and the race of its founder (r). Panel B plots the
ηs,n,r coefficient estimates from Equation (4), which allows the relationship between a firm’s racial composition
of hires, its cumulative hires to date, and the race of the founder to vary with the firm’s total observed hires (s).
Both models are estimated via Poisson quasi maximum likelihood (PQML). In Panel A the omitted category is
the first 5 hires after the year of entry for firms with white founders. In Panel B the omitted category is the first
10 hires after the year of entry for firms with white founders and 50–249 total observed hires. Founder race is
inferred from the race of the top-paid manager or employee at entry.
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Figure 5
Connected Hires Are Less Likely to Be Dismissed

(a) Dismissal Rates by Job Tenure and Connected Status

(b) Three-Month Dismissal Rate by Overlap

Note: Panel A plots dismissal rates by job spell tenure for connected and nonconnected hires, adjusting for
establishment, occupation, and year fixed effects as described in Equation (5). The model is estimated via
Poisson quasi maximum likelihood (PQML). “Connected” hires had previously shared a workplace (with no more
than 100 employees) with an incumbent at this establishment.
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Figure 6
Racial Disparity in Dismissal Rates by Total Hires

Note: This figure plots the adjusted, firm-level nonwhite-white difference in log dismissal rates as a function of
founder race and the firm’s total number of observed hires after the year of entry. Firm-specific racial differences in
dismissal rates are constructed as described in Equation (7). The model is estimated via Poisson quasi maximum
likelihood (PQML). We limit to establishments with 20 or more hires.
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Figure 7
Nonwhite Share of New Hires by Establishment Size

Note: This figure plots σc(J(i,t)) coefficient estimates for several specifications of the model (13) described in
Section 6.3, which are estimated via Poisson quasi maximum likelihood (PQML). Year Effects refers to a model
that includes only year effects (τt) as additional controls. + Microregion Effects refers to a model that includes
microregion fixed effects (µm(J(i,t))) in addition to year effects. + Ind. by Occ. Effects refers to a model that
also includes fixed effects for three-digit occupation by two-digit industry combinations. + Ind. by Occ. by
Educ. Effects replaces industry by occupation fixed effects with fixed effects for industry by occupation by worker
education category fixed effects.

44



Table 1
Entrepreneurship Rates and Characteristics of Private

Sector Employees by Race Group

All White Mixed Black
(1) (2) (3) (4)

A: Men
Share of sample in column race group 1.00 0.48 0.43 0.08
Share in private employment 0.39 0.41 0.37 0.42
Share unemployed 0.051 0.045 0.056 0.064
Share entrepreneurs 0.030 0.041 0.021 0.018

Characteristics of private sector employees
Mean years of education 8.67 9.40 7.91 7.96
Fraction with high school or more 0.47 0.54 0.39 0.39
Mean log hourly wage 1.96 2.08 1.81 1.92
Share in formal sector employment 0.76 0.79 0.72 0.76

A: Women
Share of sample in column race group 1.00 0.50 0.42 0.08
Share in private employment 0.21 0.24 0.17 0.19
Share unemployed 0.065 0.056 0.071 0.086
Share entrepreneurs 0.016 0.022 0.010 0.008

Characteristics of private sector employees
Mean years of education 10.33 10.77 9.70 9.62
Fraction with high school or more 0.68 0.72 0.62 0.62
Mean log hourly wage 1.88 1.97 1.74 1.85
Share in formal sector employment 0.78 0.80 0.74 0.77

Note: This table reports statistics from the Pesquisa Nacional por Amostra de
Domicilios (PNAD) household survey for the years 2003 through 2015. The sample
is limited to men and women aged 18–65. We define entrepreneurs as those who
self-report running a business, formal or informal with at least one paid employee.
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Table 3
Descriptive Statistics for Referral Analysis

Sample

Dyads Job Changer Incumbents
(1) (2) (3)

Any Link 8.4%
Linked 4.1%
Hired 0.082%
White 30.2% 32.0% 50.1%
Male 43.2% 55.9% 62.4%
Age 32.2 31.7 34.2
Dest. Size

1–99 62.6% 59.0% 60.5%
100–499 21.0% 22.7% 20.2%
500+ 16.5% 18.3% 19.3%

Num. Obs. 303,338,866 1,353,787 9,216,640

Note: The “Dyads” column includes pairs of job changers
matched to potential destinations. The “Incuments” column de-
scribes the population of incumbent workers who are linked to
some hired worker via a past coworking relationship.
Source: RAIS, 2013–2017.
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Table 4
Referral Effects by Job Seeker and Incumbent Race

Overall Race Match

(1) (2) (3) (4)

True Link 0.182 0.222 0.117
(0.003) (0.004) (0.003)

Any Link 0.097 0.066
(0.004) (0.002)

Race Match × True Link
Nonwhite / Nonwhite 0.192

(0.007)
Nonwhite / White 0.025

(0.004)
White / Nonwhite 0.020

(0.007)
White / White 0.136

(0.006)

Dep. Var. Mean. 0.084 0.084 0.084 0.084

Estab. Pair FE X X X
Placebo Link Control X X X

Num. Estab. Pairs 23,026,153
Number of Obs. 303,338,866

Note: Columns 1–3 presents estimated referral effects under different identifying as-
sumptions. Column 4 reports heterogeneity in referral effects based on the match
between the race of the job changer and the race of the linked incumbent. All speci-
fications include controls for worker demographic and human capital characteristics.
Column 2 controls for origin and destination establishment effects. Column 4 includes
controls for each race match interacted with “Any Link,” which indicates observa-
tions for which the job changer has either a true coworker or a placebo coworker
connection to an incumbent worker at the destination. When reporting the race
match, we put the race of the job seeker first and the linked incumbent second. So
“White / Nonwhite” indicates a white job seeker is linked to a nonwhite incumbent
at the destination.
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A Data Appendix

A.1 RAIS Data

We prepare the RAIS data in several steps. First, we clean the raw data files retrieved from the

MTE. Next, we prepare a master dataset that imposes certain variable definition and data cleaning

decisions. Finally, we prepare the various samples that are needed for particular analyses.

A.1.1 Cleaning the Raw Data

The raw data files are delivered by year, and our analysis in this paper uses the data from 2003–

2017. The variables available change across years, as does their coding. In a first step, we build a

codebook and redefine variable names and labels to better track relationships among the variables.

Workers are uniquely identified by a PIS code and establishments by a CNPJ code. We build

a relational database comprised of three tables:

• Job table with a single record for each PIS-CNPJ-YEAR that includes all characteristics

specific to the employment match.

• Establishment table with a single record for each CNPJ-YEAR pair with all characteristics

specific to an establishment.

• Worker table, with a single record for each PIS.

To prepare the Job table, we first disambiguate a handful of records that duplicate the same

PIS-CNPJ pair in the same year. In a small fraction (less than 2 percent) of cases, the raw data have

multiple records for the same PIS-CNPJ pair in a given year. A negligible number (around 15 per

year out of roughly 60 million) also share the same reported date of hire. The vast majority (95–98

percent) are pairs with exactly two records in the same year. The extra records are associated

with administrative reassignments that are not consequential for our analysis, and mostly occur in

public-sector jobs. In all cases, we combine the repeated records into a single PIS-CNPJ-year level

record that includes all earnings information, the earliest date of hire, and all other characteristics
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from the record with the latest date of separation. After completing this disambiguation, each

record is uniquely identified by a combination of PIS-CNPJ-YEAR. For variables whose coding

changes over time (like education and race), we define a harmonized version that has a consistent

coding across all years.

To prepare the Establishment table, we compute the modal value for each establishment

characteristic (industry, size class, location, ownership type) across all job-level records in the Job

table.

An important feature of the RAIS data is that establishments can, and do, report different

values for the demographic characteristics of the same PIS (Cornwell et al., 2017). The Worker

table includes the modal values for race, gender, and date of birth across all records in the Jobs

table that involve the same PIS. We also retain the time-varying information on employer-reported

race, gender, date of birth, and education in the Job table. We also define an additional measure

of education which records, for each year, the highest level of education reported for that PIS up

to that date.

A.1.2 Primary Analysis Data

From the cleaned database, we extract primary analysis data for each of Brazil’s five regions. We

impose very few restrictions at this stage, but define a few key variables:

Wages: the real hourly wage (in 2015 Brazilian Reais). We divide real monthly earnings by the

number of contracted hours per month. To approximate the number of hours a worker is contracted

to work each month, we multiply contracted hours per week, which is reported in RAIS, by 30
7 .

Average monthly earnings are reported in nominal reais, which we convert to constant 2015 reais

using the OECD’s Consumer Price Index for Brazil.

Dominant Job: In much of the literature, and our analysis, it is common to assemble a worker-

year panel from the linked data. Since workers often hold multiple jobs in the same year, we define

the dominant job as the job with highest earnings for the year among all those with the longest

observed tenure.

Valid Identifiers: The PIS and CNPJ numbers are social security and tax identifiers that include

check digits, by which it is possible to identify records with invalid identifiers.

A.1.3 Data for Referral Analysis

To study referrals, we first extract data on new hires from the primary analysis data. We restrict the

sample to job-year observations with valid PIS and CNPJ identifiers. The RAIS data provide several

different ways to identify new hires, and we require they all agree. Specifically, we extract PIS-

CNPJ-YEAR observations when they are (1) the first time a PIS-CNPJ combination is observed;

(2) the match is actually coded as a new hire; (3) the recorded year of hire corresponds to the year

of the observation. For each new hire we link information on their prior year employer, including

those who were not employed in the prior year. For our analysis of displaced workers, we restrict the
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sample to those newly hired workers whose prior-year employer had a mass displacement event.33

To define coworking relationships, we extract all job-year observations with valid CNPJ and

PIS data for 2003–2015, keeping only full-time jobs (at least 35 hours contracted per week) and

in establishments with at least 4 and fewer than 100 employees. We then define a dataset with

one observation for each PIS-CNPJ employment match that records the start and end dates of the

job spell. Next, we form the full cartesian product of the PIS-CNPJ level data, joined by CNPJ,

which forms one observation for each pair of workers ever employed in the same CNPJ. For each

such pair, we compute the overlap in their job spells as the number of months between the start

of the later-starting job and the end of the earlier-ending job. If the earlier-ending job ends after

the later-starting job starts, overlap is positive. Otherwise, it is negative. We retain all pairs with

overlap greater than or equal to −12 months.

To build the dyad data, we associate each worker hired in a given year t with the plant from

which they separated in year t−1 for all hires between 2013–2017. For each origin firm, we restrict

attention to potential destinations to which at least one separating worker from the origin plant

moves. For each separating worker, we assign one observation for each such potential destination.

Then, using the information on overlapping coworker pairs, we define “linked” potential destinations

as those where the separating worker has overlap at least one incumbent worker. Finally, we link

basic demographic information for the focal (hired) worker and for the linked incumbent (when

there is one).

To ensure that our analysis of referrals is not simply picking up tied moves where multiple

workers from the same plant all move to the same destination, we do several things. First, we

ensure that the linked incumbent in the potential destination was not hired in the same year the

separating worker is at risk to move there. Second, we only use coworking relationships that were

formed at least two years prior to the move. Finally, we make sure that the plant at which the

two workers were most recently employed together was neither the origin firm for the separating

worker, nor the potential destination where the linked incumbent is employed.

A.1.4 Estimation of the AKM model

For certain analyses, we use employer effects from the canonical two-way fixed effects model in-

troduced by Abowd et al. (1999), which models the log wage as a linear function of unobserved

worker and employer heterogeneity. As is standard, we estimate the model using the preconditioned

conjugate gradient algorithm (pcg in MATLAB) and then separately identify the firm and worker

effects within each connected component of the realized mobility network. See Abowd et al. (2002)

for details regarding the estimation and identification methods.

We estimate the AKM model separately by region, restricting the sample to dominant job

contract-years where both the PIS and CNPJ are valid, average monthly earnings are positive,

and the employed worker is between 20 and 60 years of age. We control for time-varying worker

33We define mass displacement events as those where the establishment’s employment drops by between 60 and
90 percent in a single year.
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characteristics: a cubic in age interacted with race, gender, and education, along with a full set of

unrestricted year effects. To ensure the worker effects are separately identified relative to the year

effects and linear term in age, we normalize the age profile to flatten out at age 30 (Card et al.,

2018).

B Appendix: Additional Results

B.1 Racial Differences in Preferences over Employer Size

One alternative explanation for the sorting pattern we document is that, relative to white job

seekers, nonwhite job seekers have a strong preference for working at large employers. We build on

the insight that, under some assumptions, worker preferences over employers can be inferred from

worker mobility patterns (e.g., Sorkin, 2018). We use the poaching rank as developed by Bagger

and Lentz (2018). The premise of the poaching rank is that higher-ranked employers should hire

relatively more workers from employment than from unemployment. That’s because poaching a

worker from another employer indicates that the worker prefers the destination employer. The

poaching index for establishment J is defined as the share of all new hires that are poached from

other employers:

pJ =
n(., J)

n(0, J) + n(., J)
(B.1)

where n(., J) is number of hires poached from other and n(0, J) hires from unemployment.

The poaching rank of establishment J is simply a conversion of the poaching index into an

ordinal ranking of employers. We group establishments into 1,000 quantiles based on their poaching

index.

We measure race-specific poaching ranks for each establishment, and then relate those ranks

to founder race and total hires using the sample of entrants discussed in Section 4.2. Figure B.12

reports the results.

B.2 Analysis of Displaced Workers

Our main estimates of referral effects in Section 4.1.2 are based on data covering all workers who

separated from jobs between 2012 and 2016. Because these workers may have been inspired to

change jobs due to the quality of their social networks, our results could partially be driven by self-

selection. To address this concern, we have reestimated referral effects focusing only on workers

who were displaced from their employers. First, we identify mass displacement events in the RAIS

data as those years in which plant-level employment contracts by between 60 and 90 percent from

a baseline of at least 10 employees.34 Then we construct dyads for those workers who separate from

plants where there was a mass displacement event, just as in Eliason et al. (2020). The rest of the

data construction is identical to the sample of all job changers.

34We exclude events in which plant employment goes to zero to avoid capturing plant acquisitions or mergers in
our data.
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Table B.1 reports descriptive statistics for the displaced worker sample. Of note, the share

of dyads that record a hire is smaller (0.074 percent) than the full sample (0.082 percent). The

number of dyads that in which the displaced worker has a coworker link to the target firm is also

smaller (3.7 percent versus 4.1 percent in the full sample). There are just 39,701 displaced workers

in our sample. They are slightly older, less likely to be white, and considerably more likely to be

male, than the 1.4 million workers in the full data.

Table B.2 reports the same models as Table 4 for the displaced worker sample. The results

for the displaced workers sample are nearly identical to the results based on the full sample. The

point estimates in our preferred specifications (Columns 3 and 4) are slightly smaller, though given

differences in the baseline mean and the precision of the estimates, one would be hard pressed to

make a strong claim that the quantitative differences are meaningful. We conclude that bias driven

by selection of job movers is not driving our main results.
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Figure B.1
World Management Survey Scores Increasing in Employer Size

Note: This figure reports average overall management and people management scores for medium and large
Brazilian manufacturing firms in the World Management Survey. The scores measure the adoption of formal
management practices in different areas of performance, including personnel (people) management, operations,
and target-setting. See Bloom et al. (2014).
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Figure B.2
Share of Workforce in Human Resources Increasing in Employer Size

Note: This figure reports the share of an employer’s workforce in human resources-related (HR) occupations.
HR occupations include: administrador (administrator); diretor de recursos humanos (human resources director);
gerente de recursos humanos (human resources manager); and gerente de departamento pessoal (personal depart-
ment manager). The HR share is calculated for each plant by year combination, then averaged across plant by
year combinations weighting by number of hires.
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Figure B.3
Nonwhite Share of Hires Converges with Cumulative Hires, Controlling for Firm

Size

Note: This figure plots the relationship between the racial composition of a firm’s hires and its cumulative hires
to date. The figure plots the ηn,r coefficient estimates from Equation (3) augmented with HQ establishment size
fixed effects, summarizing the relationship between a firm’s racial composition of hires, its cumulative hires to date
(n), and the race of its founder (r). The establishment size categories are: 1–4, 5–9, 10–19, 20–49, 50–99, 100–249,
250–499, 500–999, and 1,000 or more employees. The model is estimated via Poisson quasi maximum likelihood
(PQML). The omitted category is the first five hires after the year of entry for firms with white founders. Founder
race is inferred from the race of the top-paid manager or employee at entry.
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Figure B.4
Nonwhite Share of Hires Converges with Cumulative Hires, by Ownership

(a) Pooled

(b) By Total Hires, Balanced

Note: This figure plots the relationship between the racial composition of a firm’s hires and its cumulative hires
to date. Panel A plots the ηn,r coefficient estimates from Equation (3), summarizing the relationship between a
firm’s racial composition of hires, its cumulative hires to date (n), and the race of its founder (r). Panel B plots the
ηs,n,r coefficient estimates from Equation (4), which allows the relationship between a firm’s racial composition
of hires, its cumulative hires to date, and the race of the founder to vary with the firm’s total observed hires (s).
Both models are estimated via Poisson quasi maximum likelihood (PQML). In Panel A the omitted category is
the first 5 hires after the year of entry for firms with white founders. In Panel B the omitted category is the first
10 hires after the year of entry for firms with white founders and 50–249 total observed hires. Founder race is
inferred from the racial composition of the firm’s ownership.
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Figure B.5
Cumulative Hires Distribution Five Years Post-Entry

Note: This figure plots a histogram for the number of cumulative hires by firms five years after entry. The sample
is limited to firms that remain in the RAIS data five years after entry. In the “Firm-Weighted” bars, each firm is
weighted equally. In the “Hires-Weighted” bars, each firm is weighted by their number of cumulative hires.
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Figure B.6
Nonwhite Share of Hires Converges with Cumulative Hires, New Establishments

of Existing Firms

Note: This figure plots the relationship between the racial composition of an entrant establishment’s hires and
its cumulative hires to date. The figure plots the ηn,r coefficient estimates from Equation (3), summarizing the
relationship between an establishment’s racial composition of hires, its cumulative hires to date (n), and the racial
of employees at incumbent establishments in the firm (r). The model is estimated via Poisson quasi maximum
likelihood (PQML). We characterize establishments by the nonwhite share of the firm’s incumbent employees,
and divide establishments into three categories on this basis: 0–33 percent, 33–67 percent, and 67–100 percent.
The omitted category is the first five hires after the year of entry for establishments where the nonwhite share of
the firm’s incumbent employees is 0–33 percent.
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Figure B.7
Nonwhite Share of Hires by Cumulative Hires for Varying Firm Pay Premiums

(a) Bottom Quintile (b) Middle Quintile

(c) Top Quintile

Note: This figure plots the ηn,r coefficient estimates from Equation (3), summarizing the relationship between an
establishment’s racial composition of hires, its cumulative hires to date (n) and the race of its founder (r). Firms
are grouped by the quintile of their AKM firm effect for white workers. The model is estimated via Poisson quasi
maximum likelihood (PQML). In each panel the omitted category is the first hire of establishments with white
founders.
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Figure B.8
Nonwhite Share of Hires by Cumulative Hires and Microregion Nonwhite Share

(a) Bottom Quintile (b) Middle Quintile

(c) Top Quintile

Note: This figure plots the ηn,r coefficient estimates from Equation (3), summarizing the relationship between an
establishment’s racial composition of hires, its cumulative hires to date (n) and the race of its founder (r). Firms
are grouped by quintile for the nonwhite share of hires in the microregion where the firm is located. The model
is estimated via Poisson quasi maximum likelihood (PQML). In each panel the omitted category is the first hire
of establishments with white founders.
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Figure B.9
Dismissal and Quit Rates by Job Tenure

Note: This figure presents dismissal (or employer-initiated or “involuntary” separations) and quit (or employee-
initiated separation) hazard rates as a function of job spell tenure. Tenure is grouped in 15-day periods.
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Figure B.10
Racial Disparity in Quit and Separation Rates Rates by Total Hires

(a) Quits

(b) Separations

Note: This figure plots the adjusted, establishment-level nonwhite-white difference in log quit rates (Panel A)
and separation rates (Panel B) as a function of founder race and the establishment’s total number of observed
hires after the year of entry. Establishment-specific racial differences in quit and separation rates are constructed
as described in Equation (7). The model is estimated via Poisson quasi maximum likelihood (PQML). We limit
to establishments with 20 or more hires.
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Figure B.11
Occupation-Based Predicted Nonwhite Share by Cumulative Hires

Note: This figure plots the relationship between the occupational mix of a firm’s hires and its cumulative hires to
date. The figure plots the ηn,r coefficient estimates from Equation (8), summarizing the relationship between a
firm’s occupational mix of hires, its cumulative hires to date (n), and the race of its founder (r). Occupational mix
is characterized by ω̄o, the nonwhite share of workers hired into that six-digit occupation. The omitted category
is the first five hires after the year of entry for firms with white founders. Founder race is inferred from the race
of the top-paid manager or employee at entry.
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Figure B.12
Poaching Index by Founder Race and Total Hires

(a) White Hires

(b) Nonwhite Hires

Note: This figure reports race-specific average poaching ranks by an establishment’s total hires and founder’s
race. The same of entrant establishments is described in Section 4.2. The poaching rank is defined in Section B.1.
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Table B.1
Descriptive Statistics for Displaced

Worker Sample

Dyads Displaced Incumbents

(1) (2) (3)

Any Link 7.3%

Linked 3.7%

Hired 0.074%

White 26.5% 29.6% 47.0%

Male 41.8% 64.3% 69.3%

Age 34.3 33.5 35.0

Dest. Size

1–99 63.6% 58.0% 58.3%

100–499 20.0% 24.0% 22.1%

500+ 16.5% 18.0% 19.5%

Num. Obs. 11,323,615 39,701 651,306

Note: The “Dyads” column includes pairs of displaced

workers matched to potential destinations. The “Incum-

bents” column describes the population of incumbent work-

ers who are linked to some hired worker via a past coworking

relationship.

Source: RAIS, 2013–2017.

App. 18



Table B.2
Referral Effects by Job Seeker and Incumbent Race:

Displaced Worker Sample

Overall Race Match

(1) (2) (3) (4)

True Link 0.167 0.278 0.116

(0.012) (0.020) (0.014)

Any Link 0.086 0.052

(0.013) (0.007)

Race Match × True Link

Nonwhite / Nonwhite 0.181

(0.028)

Nonwhite / White 0.016

(0.018)

White / Nonwhite 0.017

(0.025)

White / White 0.130

(0.018)

Dep. Var. Mean. 0.074 0.074 0.074 0.074

Estab. Pair FE X X X

Placebo Link Control X X X

Number of Obs. 11,323,615

Note: Columns 1–3 presents estimated referral effects under different identifying as-

sumptions. Column 4 reports heterogeneity in referral effects based on the match

between the race of the job changer and the race of the linked incumbent. All speci-

fications include controls for worker demographic and human capital characteristics.

Column 2 controls for origin and destination establishment effects. Column 4 includes

controls for each race match interacted with “Any Link,” which indicates observa-

tions for which the job changer has either a true coworker or a placebo coworker

connection to an incumbent worker at the destination. When reporting the race

match, we put the race of the job seeker first and the linked incumbent second. So

“White / Nonwhite” indicates a white job seeker is linked to a nonwhite incumbent

at the destination. The sample is restricted to worker-target plant dyads for workers

who separated from their job during a mass displacement event.
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Table B.3
Characteristics of Entrant HQ Establishments

By Top-Paid Manager By Ownership

Pooled White Nonwhite Pooled White Nonwhite

Founders Founders Founders Founders Founders Founders

(1) (2) (3) (4) (5) (6)

Nonwhite Founder (%) 33.0 0.0 100.0 16.6 0.0 100.0

Persistence

After 3 Years 65.5 66.4 63.8 63.1 63.6 60.3

After 5 Years 42.3 43.3 40.2 39.4 40.1 35.9

Total Hires

After 3 Years

1–19 79.2 79.4 79.0 72.8 73.2 70.6

20–49 14.3 14.3 14.4 17.9 17.8 18.3

50–249 6.1 6.0 6.2 8.6 8.4 10.1

250–499 0.3 0.3 0.4 0.5 0.5 0.8

500–999 0.1 0.1 0.1 0.2 0.1 0.2

1,000+ 0.0 0.0 0.0 0.0 0.0 0.0

After 5 Years

1–19 65.4 65.6 64.8 56.8 57.3 54.0

20–49 22.0 21.8 22.4 25.5 25.4 26.3

50–249 11.6 11.6 11.6 15.8 15.5 17.1

250–499 0.8 0.8 0.9 1.3 1.2 1.8

500–999 0.2 0.2 0.3 0.4 0.4 0.6

1,000+ 0.1 0.1 0.1 0.2 0.2 0.2

Number of Firms 2.27m 1.52m 0.75m 591k 493k 98k

Note: This table reports summary statistics for entrant HQ establishments in the Relação Anual de In-

formações Sociais (RAIS) data for the years 2003–2017. In columns 1 through 3 we infer the race of the firm’s

founder using the race of the top-paid manager (or top-paid employee if there is no manager present) in the

year of entry. In columns 4 through 6 we infer the race of a firm’s founder using the racial composition of

ownership. We classify firms where more than 50 percent of ownership is white as having a white founder and

firms where more than 50 percent of ownership is nonwhite as having a nonwhite founder.
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