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1 Introduction 

Constructing public transit infrastructure can improve labor market opportuni-

ties by reducing commuting costs. However, estimating the commuter benefts of new 

transit infrastructure is challenging because of endogenous worker responses and land 

market efects. Workers may change their home location, work location, or labor mar-

ket participation in response to new transit infrastructure. The presence of transit can 

act as an amenity that raises local land values. All of these mechanisms have an impact 

on the magnitude and distribution of transit’s benefts. 

I study the implementation of rail transit on the island of Oahu, Hawaii. The frst 

segment of the system began operating in 2023. The proposed benefts of building rail 

on Oahu included 1) a reduction in commute duration for workers, 2) an increase in 

public-transit-mode share, and 3) an improvement in labor market outcomes through 

improved worker access to jobs. I propose and estimate a model that tests for these 

benefts, accounting for endogenous worker decisions. I fnd evidence of the rail system 

achieving Goals 2 and 3 but not 1. 

The general equilibrium efects of rail are unknown without accounting for endoge-

nous worker decisions. I collect detailed, block-level commute-time data and block-level 

bilateral commuter-fow data. Through a quantitative spatial model (QSM), I estimate 

worker preferences across commuting routes and modes for both low- and high-income 

workers. I then apply these parameters to estimate the general equilibrium efects of 

the new rail infrastructure on commute times, public-transit-mode share, and employ-

ment. Under static worker choice, I fnd that rail produces commute-time savings for 

the average worker. After accounting for endogenous decisions, I fnd that the rail 

system leads to a small increase in the average commuting time on Oahu, as workers 

substitute away from cars and toward transit, and as they also substitute toward longer 

routes. Despite this failing to reduce average commute time in spatial equilibrium, I 

fnd that the rail system leads to an increase in public-transit-mode share and in the 

aggregate employment rate. 

The theory that spatial isolation from jobs may induce joblessness was proposed 

as the spatial mismatch hypothesis in Kain (1968). Andersson et al. (2018) provided 

recent empirical work that confrmed the continued importance of spatial mismatch in 

the United States. Some papers have relied on natural experiments in which transit 

access changed exogenously to identify causal labor market efects (Holzer et al., 2003; 

Tyndall, 2017); these studies found a positive impact of transit access on employment. 
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Longitudinal data on individual workers is not generally available to researchers 

analyzing the efects of transportation systems. As a result, accounting for endogenous 

household location decisions typically relies on directly modeling the choices of workers. 

QSMs have been implemented to estimate aggregate and distributional benefts of new 

urban amenities, particularly transportation systems. The basis for spatial urban mod-

els comes from the monocentric city model (Alonso, 1964; Muth, 1969; Mills, 1967) and 

the polycentric city model (Fujita and Ogawa, 1982). Workers accept higher commut-

ing time to access areas with lower housing costs. In a spatial equilibrium, these costs 

and benefts must lead to an equalization of utility over space. The extension of the 

basic urban model to incorporate structural modeling approaches, based on the discrete 

choice methods of McFadden (1973), was developed in Anas (1981) and Epple and Sieg 

(1999) and was further extended in several papers including Bayer et al. (2004), Sieg 

et al. (2004), Bayer et al. (2007), Bayer and McMillan (2012), Ahlfeldt et al. (2015), 

and Behrens and Murata (2021). 

This paper relates most closely to a recent literature on estimating the benefts of 

transit infrastructure using structural neighborhood-choice modeling. Severen (2019) 

examined the impact of rail transit on the labor market in Los Angeles. Tyndall (2021) 

analyzed light rail transit (LRT) systems across four U.S. cities, and Chernof and Craig 

(2022) examined the distributional efects of a rail expansion in Vancouver. Each of 

these papers implemented a neighborhood choice model to understand the interaction 

between housing markets, labor markets, and endogenous worker decisions in estimating 

the efects of transit infrastructure. I incorporate features of these models. 

I describe and apply a new model to a data set with more spatial detail than 

has been used in past literature. I incorporate block-level bilateral matrices for both 

commuter fows and a block-level data set of travel times from an online way-fnding 

service. As discussed in Dingel and Tintelnot (2023), urban discrete-choice models 

using granular data can sufer from estimation bias if the observed commute matrix is 

“sparse,” meaning there are few observed commuters relative to the size of the commute 

matrix being estimated. I provide some innovations on this topic by proposing a new, 

nested estimation strategy. I reduce matrix sparseness by pooling multiple years of 

data and collapsing fow information from the census-block to the census-tract level.1 

However, given the availability of block-level information, I then match worker location 

distributions to specifc blocks within tracts by nesting a housing market within tracts. 

1A similar tract-level pooling approach is taken in Tyndall (2023), but that approach does not 
utilize block-level information. 
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This is the frst paper to make use of block-level information in an urban discrete-choice 

model while directly addressing the issue of matrix sparseness. 

A specifc focus of this paper is to predict the role of long-run endogenous sorting 

on the impacts of new rail infrastructure. By executing a model across several stages of 

a rail phase-in period, I estimate the relative role of direct commuting-cost reductions 

and the role of endogenous household location, mode, and labor market decisions. I 

specifcally recover estimates of rail’s impact on average commuting time, transit-mode 

share, and the island-wide employment rate. I fnd that accounting only for direct 

commuting-cost savings fails to capture the aggregate impact of transit. Workers with 

strong preferences for using transit are likely to sort toward stations (Glaeser et al., 

2008), while workers with a preference for driving will sort away from stations, repelled 

by rising land costs. Low-income workers are more likely to use transit but are also 

sensitive to rent increases, meaning the efect of a local public-transit amenity that 

raises neighborhood demand might be either to attract or to repel low-income workers, 

depending on the magnitude of the two efects (Tyndall, 2021). The structural approach 

attempts to account for these competing efects and estimate the total island-wide 

impacts of rail. 

The paper will proceed as follows: Section 2 describes the empirical setting. Sec-

tion 3 provides a discussion of data. Section 4 describes the structural estimation 

methodology. Section 5 provides results, and Section 6 concludes. 

2 Rail Transit on Oahu 

I study Oahu’s frst public transit rail line. The system has a so-called hybrid-rail 

design, combining features of both light and heavy rail systems. The system is elevated, 

with track and station platforms supported on concrete pillars. The full line is planned 

to include 21 stations, which span 31 kilometers—about 19 miles. The western edge 

of the system extends to the Kapolei neighborhood, and the easternmost station is 

located at Ala Moana Center, a shopping mall and major mixed-use area in the urban 

core of Honolulu for dining and entertainment.2 The opening of the full 21-station line 

is set to be completed in stages, with the westernmost 9 stations opening in 2023, the 

subsequent 10 stations opening by 2031, and the fnal 2 opening at an unconfrmed 

2The precise location of the easternmost stations is a topic of debate and could be revised. Currently, 
construction has begun to Ka'ākaukukui Civic Center, with the two easternmost stations still in the 
planning phase. 
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later date. I will refer to the initial nine stations as Phase 1 and the remainder of the 

stations as Phase 2. I provide analysis on the efects of Phase 1 as well as on the efects 

of the full line (Phase 2). Figure 1 shows the locations of the rail stations on the island 

of Oahu. 

Figure 1: Location of Rail Stations on Oahu and the H1 Highway 

NOTE: The H1 Interstate Highway is shown as a black line roughly tracing the Phase 1 stations. 
Phase 1 stations are scheduled to open in 2023. Among Phase 2 stations, the 10 westernmost 
stations are scheduled to open by 2031, with the fnal two stations opening at a later date. 

The path of the rail line roughly follows the H1 Interstate Highway. The H1 

serves commuters from the west side of the island who commute into the urban core of 

Honolulu. Eastbound trafc on the H1 is heavy during rush hour; this fact served as 

a partial motivation for providing a high-capacity public transit option on this route. 

Household incomes on the west side of Oahu are generally lower than on the east side 

of Oahu, meaning the proposed rail route is aligned to provide access to the downtown 

job center for working-class populations. 

The history of passenger rail planning on Oahu spans several decades. City doc-

uments discussing the prospect of an urban rail line can be found dating back to the 

4 



1960s. In 2005, funding was secured to begin construction of the project, and in 2011 

construction began. The rail project has experienced signifcant delays in construction 

and large cost overruns. Even after construction began, there was signifcant political 

uncertainty regarding whether the project would be completed. For example, mayoral 

campaigns from 2004 to 2020 have debated whether to complete or abandon construc-

tion of the rail line. Political opposition to the construction of rail often centered on 

concerns about cost overruns. When construction began, capital costs were expected to 

be $4 billion, with $1.6 billion coming from the Federal Transit Administration (FTA). 

However, projected costs rose steadily over the following years. The current projected 

cost of the line is $12.4 billion. Even considering the high costs of transportation infras-

tructure throughout the United States (Brooks and Liscow, 2022; Gupta et al., 2022), 

the Oahu system’s construction costs are extremely high relative to similar projects in 

comparable cities, in terms of either total cost or costs per system-mile. 

Prior to the opening of the rail line, the rail corridor was served by signifcant 

rush-hour bus service. Oahu provides relatively extensive bus service compared to 

similar-sized U.S. cities. However, buses travel within general trafc in almost all cases, 

meaning they are subject to trafc delays and the accompanying uncertainty about trip 

duration. 

The island of Oahu is coterminous with the City and County of Honolulu.3 Oahu 

provides an excellent study location for several reasons. 

First, as a small island, the relevant local labor market is cleanly defned. Typi-

cally, studies of urban labor markets impose assumptions to defne a study area, often 

adopting census boundaries. In the case of Oahu, the boundaries of the study area are 

clear, and there are no border-area spillover efects to be considered. Access to Oahu 

from the neighboring Hawaiian Islands is only possible by air travel. Oahu is small 

enough that commuting is possible across the entire island, though large enough to be 

comparable in size to the commuting sheds of other U.S. metropolitan areas. 

Second, the Oahu rail system represents a signifcant infrastructure investment and 

the frst rail connection on the island. The lack of existing rail infrastructure makes 

the treatment defnitions clearer, as I do not need to consider network efects for a 

preexisting rail system. 

Oahu shares many urban-form characteristics with midsized American cities, such 

as signifcant highway infrastructure and primarily single-family-zoned land use, sur-

3Counties in Hawaii do not contain distinct municipalities; rather, they operate under a combined 
city-county system. 
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rounding a relatively dense urban core. Demographics on Oahu are unique in several 

dimensions: Median household income on Oahu ($87,700) is higher than the median 

household income across U.S. metropolitan areas ($69,600), while the college educa-
tion rate is similar. Oahu has a high Asian population share (43 percent) and a high 

share of Native Hawaiians and Pacifc Islanders (10 percent) when compared to other 

metropolitan areas in the United States. The pre-rail rate of public transit commuting 

on Oahu (7.2 percent) was about 40 percent higher than the average rate across other 

metro areas. Demographic information for the study area is provided in Table 1, with 

comparisons to average U.S. metro conditions and the United States as a whole. 

Table 1: Demographic Characteristics of Study Area 

Oahu U.S. metro areas USA 
Population 979,682 284,298,061 331,449,281 
Median household income ($) 87,722 69,591 64,994 
College education rate† (%) 35.7 34.7 32.9 
Labor force participation (%) 66.4 64.3 63.4 
Unemployment (%) 2.6 3.5 3.4 
Median age (yrs) 38.2 38.0 38.2 
Owner-occupancy rate (%) 57.5 63.0 64.4 
White (%) 20.2 68.2 70.4 
Black (%) 2.5 13.4 12.6 
Asian (%) 42.6 6.3 5.6 
Native Hawaiian or Pacifc Islander (%) 10.0 0.2 0.2 
Hispanic (%) 10.0 20.6 18.2 
Average commute time (minutes) 28.0 27.5 27.0 
Commuter mode share: 
Drove alone (%) 78.6 83.2 83.8 
Public transportation (%) 7.2 5.2 4.8 
Walking (%) 5.6 2.5 2.6 

SOURCE: Data are from the 2020 fve-year American Community Survey. 
† Bachelor’s degree or above among population 25 years and older. 

3 Data 

I construct a route-level data set, with granularity at the census-block level. I 

rely on block-level bilateral commuting-fow data from the 2014–2021 Longitudinal 

Employer-Household Dynamics Origin-Destination Employment Statistics (LODES) 

and a block-level commuting-time matrix provided through the transportation-routing 

frm Travel Time. Blocks are defned according to 2010 U.S. census boundaries. 
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LODES breaks out commuter fows by worker income. I categorize workers into 

two worker types, low- and high-income workers, relying on the cut-of values used in 

LODES. Low-income workers are defned as those earning less than $40,000 annually, 

and high-income workers as those earning more than this amount. Across the 2014–2021 

LODES, I observe 1,908,183 unique block-to-block commutes. Low-income workers 

cover 1,308,668 unique routes, while high-income workers cover 1,055,170 unique routes. 

The routes include 12,136 unique home locations and 8,276 unique work locations. I 

collapse the eight years of data to create a cross-sectional matrix, in which the number of 

commuters using a route is the average across the 2014–2021 period. Figure 2 visualizes 

the block-to-block fows. Notably, a large share of Oahu’s workers commute within the 

corridor that will be served by rail. 

Figure 2: Block-to-Block Commuter Flows 

| - Commute Route - Rail Station Site 

NOTE: Each line connects a worker’s home and work location. Heavier shadings 
indicate that more workers share that commute route. 
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I gather extensive trip-level data from the transportation routing frm Travel Time. 

For any pair of latitude and longitude coordinates, the Travel Time application pro-

gramming interface (API) returned an estimate of the commuting time. I queried the 

API for every block-to-block route on Oahu. The API incorporates predicted trafc 

and transit schedule conditions for a selected time. I set parameters to collect data 

for the quickest possible route that would allow workers to get to their destinations 

by 9:00 a.m. on a Wednesday in order to match likely commuting times. I use the 

geographic centroid of each census block as the origin and destination points, and I 

calculate driving and transit times for all block-to-block pairs. 

I frst collected a full matrix of commute times in October 2021, prior to the opening 

of the frst segment of the rail line. In August 2023, I again collected a full travel-time 

matrix, which refected conditions that included the frst segment of the rail system. 

Having both pre- and posttreatment commute-time matrices allows for the calculation 

of travel-time savings brought on by the rail line. 

To my knowledge, this is the most granular data set of commuting-time matrices 

that has been used in the related literature. Pedestrian access to transit stations is an 

important determinant of transit use. Using blocks rather than tracts better captures 

spatial access to transit nodes, which can be obscured when using tract centroids. As 

one example, the easternmost station in the system, “East Kapolei,” is located 7.2 

kilometers (km) from the geographical centroid of its surrounding census tract, and 3.7 

km from the population-weighted center of that census tract. Both of these distances 

are too far to walk in a reasonable commute. Therefore, a census tract–based model 

would be poorly suited to reconcile observed local commutes. Using census blocks 

overcomes this issue, as there are many blocks within walking distance of the station. 

Table 2 provides average travel times for driving and public transit across all one-

way commutes. Across all block-to-block pairs, the average driving time is 23 minutes, 

with an average distance of 18.5 km. When weighting routes by the number of workers 

who actually complete that commute according to LODES data, the average worker-

weighted driving time is 19.5 minutes, and the average distance is 15 km. The average 

public-transit commute time for block-to-block routes where transit is available is 62.6 

minutes, or 54.7 minutes when weighted by the number of commuters. After the frst 

phase of rail is completed, I estimate the average public-transit commute time across 

all workers falls by 1.3 minutes. The average commuting times calculated with Travel 

Time data are comparable to estimates from the American Community Survey (ACS) 

reported for Oahu. 
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Table 2: Summary Statistics, Route-Level Data 

All Observed Routes Weighted by Workers 
Driving Transit Driving Transit 

Average road distance (kms) 18.5 . 15.0 . 
Average time, pre-rail (mins) 23.0 62.6 19.5 54.7 
Average time, post-Phase 1 rail (mins) 23.0 61.0 19.5 53.4 
Average time, post-Phase 2 rail (mins)† 23.0 57.9 19.5 50.7 

NOTE: Average route characteristics among observed commutes on Oahu. Public transit fgures 
ignore routes that cannot be completed by transit or would take more than two hours one-way. † 

Phase 2 transit times are approximated using the method described in this section. 

Figure 3 shows the relationship between driving times and public transit times 

for the data covering the period before the rail system was running. For nearly every 

route, driving provides a shorter trip time than public transit. For 96.3 percent of routes, 

public transit takes more than twice as long as driving; for 74.7 percnt of routes, transit 

takes more than three times as long, and for 48.8 percent of routes, transit takes more 

than four times as long. 

Figure 4 provides examples of the trip-time data, showing the area that can be 

covered by driving and public transit for an example origin location. The left images 

show the area that can be covered within 30 minutes, while the right images show the 

area that can be covered in one hour. Comparing the top and bottom panels, the area 

accessible by driving in a given time is drastically larger than the area that can be 

accessed by public transit. Almost the entire island is accessible in a one-hour drive, 

while only a small fraction is accessible through a one-hour public-transit commute. 

The fgures refect prerail commute times. 

I restrict the data set by dropping any commute that is estimated to take more than 

two hours one-way, as these are unlikely to be viable daily commutes. This restriction 

applies only to public-transit commuting, as there are no two census blocks on Oahu 

that are more than two hours apart by driving. 

Figure 5 displays the reduction in the average public-transit commute time from 

every block with a worker population. Panel A shows the reduction in public-transit 

commute time generated by the opening of the frst phase of the rail system. I calculate 

the diference in commuting times between the two rounds of travel-time data collection. 

The result gives me precise time savings brought on by the implementation of the frst 

phase of rail service. Because the second phase is not yet operating, I do not have access 
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Figure 3: Drive Times vs. Public Transit Times for Observed Commute Routes, before Rail 

NOTE: Each point represents one commuting route. The red line would indicate trips where private 
vehicle and transit commute times are equal. The fgure displays all routes that can be completed in 

under two hours by both driving and public transit (569,339 observations). 

to a full matrix of travel times under the scenario of full rail service. I approximate the 

time savings produced by Phase 2 by frst calculating the average reduction in public-

transit commuting time experienced by any route where the straight-line connection 

between origin and destination bisects the Phase 1 rail corridor, in which the corridor 

is defned as the area within two kilometers of the rail line. I fnd that the average 

route bisecting the Phase 1 corridor experienced a 6.0 percent reduction in public-

transit commuting time. I apply this measure to Phase 2 by reducing public-transit 

commute times by 6.0 percent for any route that bisects the Phase 2 rail corridor. 

Between collecting pre- and post-rail commute-time matrices, some bus routes 

were altered. Changes included the removal of some bus routes that serviced the same 

corridor as the rail system. Some other routes were altered for unrelated reasons as part 

of regular system optimization eforts by the local transit agency. To focus analysis on 

the impact of rail, I clean the data by assuming rail did not increase transit time for any 

pair of tracts. For every route, I assume that the post-rail travel time is the minimum of 

the observed pre- or post-rail time. I also assume that transit-time reductions occurred 
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Figure 4: Job Locations Accessible from One Origin Location 

30 Minutes 60 Minutes 
Driving 

Transit 

■ - Reachable ■ - Not reachable ■ - No employment - Origin 

NOTE: Block-level information is presented, showing which areas are reachable through driving and 
public transit from an origin location placed in Honolulu’s city center. I fnd that driving provides 
dramatically more job opportunities to a worker compared to using public transit. The displayed data 
capture the pre-rail period. 

only for routes that pass through the rail corridor, holding other routes constant to 

pre-rail estimates. 

The model will incorporate estimates of local housing costs as a parameter. I 

approximate annualized local housing costs for each census block in the model. I use 

deed transfer records from Oahu. The data cover every real-estate transaction from 

2010–2021. I calculate the median sale price of a home at the census-tract level, assume 

an annual price-to-rent ratio of 20, and assign annual housing costs to each block based 

on which tract it is located in. I estimate costs at the tract level rather than the block 

level to reduce noise in areas with few transactions. Estimated annual housing costs 
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Figure 5: Reductions in Average Public Transit Commuting Time Due to Rail 

A. Phase 1 

B. Phase 2 

■ - No workers - Rail station 

NOTE: Phase 1 represents the efect of the opening of the westernmost nine stations, while Phase 2 
represents the opening of the entire 21-station system. Estimates apply to the average commuting-time 
diference across all block-to-block pairs for public transit routes. 

calculated in this way range from $11,750 to $137,397, with a median value of $34,975 

(or $2,915 per month).4 Because the model encompasses both renters and owners, this 

42021 fve-year ACS data record median monthly housing costs for owner-occupiers on Oahu to be 
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method gives a more accurate approximation of spatial variation in housing costs as 

compared to survey data on rents. 

The model introduced below will also incorporate basic sociodemographic infor-

mation, such as the employment rate. For demographic information, I use the 2020 

fve-year ACS. 

4 Methodology 

I propose a structural neighborhood-choice model to predict the efects of the 

new rail system on 1) average commute duration, 2) public-transit-mode share, and 3) 

the aggregate employment rate. I allow workers to choose their home location, work 

location, commute mode (driving vs. transit), and labor market participation. The 

model is built on the assumptions of the classic urban model. Workers are utility-

maximizing and face a trade-of between housing costs and commuting costs. Solving 

the model will yield preference parameters over routes and modes and allow worker 

behavior to be estimated in counterfactual scenarios. 

The introduction of rail reduces some commuting costs. By holding constant 

worker-preference parameters and resolving the model under alternative transit coun-

terfactuals, I am able to estimate the impact of rail on aggregate worker outcomes 

inclusive of endogenous worker decision-making. 

Equation 1 is a Cobb-Douglas style utility function that governs worker preferences: 

Uijkm = (C − cs(i)jkm)
γs(i) H(1−γs(i))χs(i)jk + ξijkm (1) 

Workers derive utility from numeraire consumption (C) and generic units of hous-

ing (H). Nonmonetary commuting costs (c) reduce consumption utility. Each worker 

(i) chooses a home location (j), work location (k), and mode of transportation (m). 

Mode choice is limited to driving or public transportation. Walking is considered as a 

component of public transportation. The share of income a worker spends on housing 

is set by 1 − γs(i). Each worker is either a high- (s(i) = h) or low- (s(i) = l) income 

worker. s(i) determines the income level of the worker when that worker is employed, 

and this characteristic is fxed. 

χs(i)jk is a route- and worker-type specifc preference parameter. Beyond difer-

ences in commuting costs (which are accounted for directly), some routes may provide 

$2,800, closely matching the median calculated from the deed transfer records. 
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higher utility than others based on their unique characteristics, such as housing and 

job prospects or any other route-specifc characteristics. Given spatial diferences in 

job types and housing quality, diferent worker types may have diferent common pref-

erences. All workers of the same type share a common evaluation of χjk. Resolving 

χs(i)jk will help produce realistic substitution patterns in the counterfactuals as workers 

of specifc types will preferentially substitute toward routes that provide higher util-

ity to their type, on average. A Type 1 extreme-value distributed-error term (ξijkm) 

captures the worker-specifc idiosyncratic preferences over each available route-mode 

option. 

Nonmonetary commuting costs (cs(i)jkm) are defned in Equation 2. ζs(i)m is the 

mode-specifc cost of commuting per hour as a share of a worker’s wage. ζs(i)m is allowed 

to difer across worker types, as various worker types may have diferent preferences 

across modes. ωs(i)k denotes hourly wage. τjkm represents the annual hours spent in 

commute. 

cs(i)jkm = ζs(i)mωs(i)kτjkm (2) 

Each worker operates under a budget constraint, represented by Equation 3. Work-

ers exhaust their income5 (ws(i)k) on housing costs (Hpj ), numeraire consumption (C), 

and monetary commuting costs (θjkm). Monetary commuting costs will be calculated 

according to the mode selected and, in the case of driving, the distance of the commute. 

Workers choose a utility-maximizing quantity of housing and pay the market housing 

costs in their home location (pj ): 

ws(i)k = Hpj + C + θjkm (3) 

A worker’s income is set according to the worker’s type, except in the case where 

a worker chooses a null work location (k = ∅), which represents being out of the labor 

force. When out of the labor force, a worker pays no commuting costs and receives a 

government-allocated income (ι). 

The utility function and budget constraint combine to produce an indirect utility 

function, shown in Equation 4. 

5Annual income (ws(i)k) and hourly wage (ωs(i)k) are related, assuming an eight-hour workday and 
260 working days in a year: ws(i)k = ωs(i)k × 8 × 260. 
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1−γs(i)1 − γs(i)γs(i)Vijkm = (ws(i)k − cs(i)jkm − θjkm)γs(i) χs(i)jk + ξijkm 
pj (4) 

Vijkm ≡ vijkm + ξijkm 

The extreme-value-distributed idiosyncratic error term produces a multinomial 

logit probability function (Equation 5), capturing the probability that a worker selects 

a specifc home, work, mode triple (Pijkm). Upper-bar notation indicates the maximum 

value in the set: 

vijkm e 
Pijkm = Pj Pk P (5) 

v evijkm 
1 1 1 

I calculate the public-transit-mode share for high- and low- income workers by 

summing all of the choice probabilities in which m is public transit. I will refer to the 

true (observed) public-transit-mode shares as Ms(i) and the model-generated values as 

Ms(i): 

j kXX 
Ms(i) = Pijk(m=transit) (6) 

1 1 

5 Solution Method 

My approach difers from prior literature in three ways. First, I have access to a 

census-block-level matrix of commuting times, which allows for a more granular anal-

ysis than has been possible previously. Second, I have both pre- and post-treatment 

commute-time matrices, allowing me to calculate realistic commute-time changes at-

tributable to rail. Third, to accommodate granular data without succumbing to the 

overftting issues identifed in Dingel and Tintelnot (2023), I propose a new method of 

nesting a block-level neighborhood choice model within a tract-level route choice model, 

solved by matching tract-level bilateral commuter fows and subsequently matching 

block-level population distributions. 

I frst solve the complete cross-sectional model using data from the pre-rail period. 

I make use of cross-sectional variation in worker commuting behavior to recover pref-

erence parameters governing commute-time costs and a vector of route-by-worker-type 

preference parameters. Assuming that worker utility is equalized across space and ob-
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serving actual housing-cost and commuting-cost information allows for the recovery of 

route-specifc preference parameters that necessarily compensate for spatial diferences 

in utility implied by housing costs and transportation costs. I then use these parame-

ters to run four counterfactual scenarios, which capture conditions across various rail 

and worker sorting conditions as described below. 

To estimate the model, I impose several exogenous parameters, shown in Table 3. 

Annual income is set to $19,859 for low-income workers and $85,326 for high-income 

workers. I recover these estimates from ACS microdata.6 I set the out-of-labor force 

income to be $10,000. 

Table 3: Exogenous Model Parameters 

Symbol Value Description 
ws(i)=l 19.859 Low-income worker income ($1,000) 
ws(i)=h 85.623 High-income worker income ($1,000) 

ι 10.000 Out of labor force income ($1,000) 
γs(i)=l 0.53 Share of income spent on non-housing consumption (low-income) 
γs(i)=h 0.85 Share of income spent on non-housing consumption (high-income) 
Ms(i)=l 0.180 Initial public transit mode share, low-income workers 
Ms(i)=h 0.085 Initial public transit mode share, high-income workers 
ζm=driving 0.93 Commuting cost per unit time as share of wage, driving 

θjk(m=transit) 0.96 Annual monetary cost of transit commuting ($1,000) 
θjk(m=driving) 0.0589×djk Annual monetary cost of private vehicle commuting ($1,000), 

d=distance in km 
NOTE: I impose these parameters on the model. 

I assume that an individual worker spends a constant fraction of income on housing 

(1 − γ). Using Oahu-specifc census microdata from the 2020 fve-year ACS, I calculate 

the share of household income spent on gross rent or mortgage payments for workers 

earning above and below the $40,000 income threshold that divides low- and high-

income workers. ACS data indicates that low-income workers spend 47 percent of their 

income on housing and that high-income workers spend 15 percent of their income on 

housing, on average.7 I use these estimates to parameterize γ. To facilitate solving 

tract-level route fows, I initially set housing costs (pj ) exogenously at the tract level, 

according to the tract-level estimates from MLS data, as described in Section 3. 

I impose an estimate of the time cost of driving as a share of the wage rate. I select 

the parameter estimated in Small et al. (2005), which examined commuting behavior 

6I use individual wage earnings from the 2020 fve-year ACS microdata for Honolulu County. I drop 
workers with earnings of zero and take the mean value for workers in each income category (low vs 
high). I fnd that the main results are not sensitive to moderate changes in income-level assumptions. 

7Davis and Ortalo-Magné (2011) discuss and estimate this parameter for the U.S., fnding that the 
average worker spends 24 percent of his or her income on housing. 

16 



I 

in Los Angeles, fnding that drivers faced a time cost of driving equal to 93 percent 

of their wage rate. The parameter for public transit commuting will be determined 

endogenously to match the observed public-transit commuting rates (Ms(i)). 

I constrain the model to produce the public-transit-mode share observed in ag-

gregate data. I impose mode-share restrictions that are specifc to worker type. 

identify Ms(i) directly from ACS data as 18.0 percent for low-income workers and 8.5 

percent for high-income workers. To avoid introducing an additional mode choice, I 

consider walking to be a component of public transit. Notably, public-transit-mode 

share among the low-income group is more than twice that of the high-income group. 

When solving for the model, the worker-type specifc time costs of public-transit use 

(ζs(i)m=transit) are determined endogenously and allow the model to generate the correct 

public-transit-mode shares in the pre-rail scenario. 

I impose monetary commuting costs (θjkv). For public transit users, I assume 

that workers pay for 12 monthly transit passes each year, which cost $960 in Honolulu 

(θjk(v=transit) = 0.960), prior to the rail opening. For those driving, I approximate 

monetary commute costs using data from the American Automobile Association (AAA) 

(American Automobile Association, 2021). Assuming 260 working days in a year, AAA 

estimates of marginal commuting costs for a “medium sedan” imply $58.87 in annual 

costs for every km of daily commuting. For each route, I use the driving distance 

estimated in the Travel Time data. To arrive at route-specifc monetary costs, I multiply 

the two-way commute distance by the per-km cost of driving.8 I assume workers ignore 

the fxed costs of car ownership when choosing a commuting mode, as the decision to 

own a car refects general mobility demand beyond commuting. 

Workers implicitly make a labor force participation decision, as selecting a null 

work location (k = ∅) represents not working. When calculating the worker shares 

for k = ∅ “routes,” I use ACS data on the number of working-age residents in each 

census tract who are out of the labor force, and I spread these workers uniformly 

across the tract’s constituent blocks, as weighted by block population. I then scale up 

the number of workers out of the labor force to precisely match the island-wide labor 

force participation rate as recorded in the ACS data (66.4 percent). I assume worker 

nonparticipation is equally likely across worker types. 

The model has a nested solution method, illustrated in Figure 6. Bilateral com-

muter fow counts for each worker type are matched for every tract-to-tract pair by 

8Weighted by commuter frequency, I estimate the average cost of commuting by vehicle to be $1,769 
per year. 
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adjusting route-level preference parameters (χs(i)J(j)K(k)). For notation, I defne the 

home census block as j, the home census tract as J(j), the work census block as k, and 

the work census tract as K(k). Furthermore, ζs(i)(m=transit) parameters for the time cost 

of transit commuting are adjusted endogenously to ensure Ms(i) = Ms(i) for each s(i). 

I simultaneously solve for block-level worker populations. Solving for the route-

level shares requires that each tract is attracting the correct number of resident workers. 

The block-level housing costs (pj ) adjust endogenously to allocate workers in proportion 

to the population of each block. I restrict the rent values so that the average rent faced 

by a worker within a tract is equal to the tract-level rent calculated from the MLSP 
(pj ×populationj )data ( P = pJ(j), ∀J). Therefore, matching block-level populations does 

populationj 

not have a frst-order efect on bilateral tract-level route popularity. 

The model is solved through contraction mapping to match tract-level commuter 

fows, transit-mode shares, and block-level populations. I defne an equilibrium as the 

case in which low- and high-income worker fows precisely match the observed data, 

each block has the correct number of worker residents, worker-type transit mode shares 

are matched to the data, and workers are in a Nash Equilibrium for which they cannot 

improve their utility by altering any of their home, work, or mode decisions. 

The model is identifed through matching the observed commuter fows of 94,010 

tract-level route-by-worker type fows, by adjusting an equal number of endogenous 

route-by-worker-type preference parameters (χs(i)jk); matching the two observed transit-

mode-share values (Ms(i)) by adjusting a vector of two endogenous transit-time cost 

parameters (ζs(i)v=transit); and matching the worker populations of 4,960 blocks by ad-

justing an equal number of rent values (pj ). 

When solving the model, I identify a unique equilibrium point. Bayer and Tim-

mins (2005) discussed establishing uniqueness specifcally for spatial sorting models. A 

related discussion is provided in Allen et al. (2020). When neighborhood preference is 

partially determined by the characteristics of other members of the neighborhood (e.g., 

preference for neighbor income or race), multiple equilibrium will naturally become a 

problem. In the current model, I do not consider neighbor preference, which removes 

concerns over the possible presence of multiple equilibria. 

Identifcation of parameters in the pre-rail period (Scenario 1) comes from cross-

sectional variation in worker choice. If two routes in the model provide the same 

commute times and housing costs, the routes will be chosen with equal frequency but 

for a diference in the preference parameter. To the extent that workers in the data 

prefer one route over the other, the shared idiosyncratic preference parameter is raised 
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Figure 6: Nested Solution Method 

Solving Tract-Level Flows and Aggregate Transit-Mode Share 

Solve route parameters (χ ↑↓) to match bilateral tract fows. 
Solve commute cost parameters (ζs(i)(m=transit) ↑↓) to match transit-mode share. 

Solving Block-Level Population Distribution 

Solve block rents (pj ↑↓) to match block-level populations within tracts. 

NOTE: The solution method matches tract-level bilateral commuting fows and worker-type 
transit-mode share, and also matches within tract-population distribution at the block level. The 

conditions are solved simultaneously. 

to capture any characteristics of the route that might explain its relative popularity. 

An identifying assumption is that these preference parameters over routes remain fxed, 

and what changes is the matrix of public-transit commute times. A reduction in public-

transit commute time makes a worker marginally more likely to prefer that route. 

Pooling data across eight years and solving commute fows at the tract level rather 

than the block level helps overcome the issue of matrix sparseness and overftting iden-
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tifed in Dingel and Tintelnot (2023).9 Oahu contains 2.5 million unique block-to-block 

commute routes across two worker types, creating a set of fve million potential routes. 

However, 95 percent of these routes contain zero commuters even after data are pooled. 

By using tract-level route choices, I estimate the model on a set of 55,440 routes, with 

two worker types, creating a set of 110,880 potential routes, of which only 22 percent 

contain no commuters. 

After solving for a pre-rail equilibrium (Scenario 1), I estimate conditions under 

counterfactual scenarios. The scenarios are summarized in Table 7. In Scenario 2, 

I lock in preference parameters and rents, and I adjust the matrix of public-transit 

commute times to refect the opening of the initial nine rail stations. I then recalculate 

worker commuting times under the improved public-transit conditions, holding worker 

behavior fxed. Subsequently, I allow workers to adjust home location, work location, 

and mode choice, and I allow rents to adjust to clear the housing market and solve for 

the new equilibrium under the new commute-time matrix (Scenario 3). Ofered wages 

are held constant, but I allow frms to endogenously shrink or grow if they experience 

a change in labor supply from workers. I calculate solutions in Scenarios 4 and 5 

similarly. I frst reduce public-transit travel times for routes that intersect the Phase 2 

rail area but that do not intersect Phase 1, and I recalculate commuting times holding 

worker behavior fxed at Scenario 3 levels. Scenario 5 solves the model for a third time 

through contraction mapping, considering the efects of the full rail system. Providing 

estimates across the fve scenarios is meant to do three things: 1) to highlight the 

role of endogenous worker choice, 2) to contrast these efects with those under static 

worker assumptions, and 3) to roughly correspond to the chronological progression of 

rail construction and worker sorting. 

6 Results 

I am primarily interested in estimating the efect of the rail system on commute 

times, public-transit mode share, and the employment rate. I summarize the three 

outcomes across scenarios in Figures 8A, 8B, and 8C. 

Figure 8A shows the progression of public-transit-mode share. In the pre-rail 

period, the model matches transit-mode share to observed data, with 18.0 percent of 

9Dingel and Tintelnot (2023) also use LODES data from New York City and demonstrate a signif-
icant reduction in estimation bias when pooling three years of data rather than using a single year. I 
pool eight years of data. 
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Figure 7: Estimation Scenarios 

Scenario 1 · · · · · ·• Pre-rail. 

Phase 1 rail is completed. Worker choices are heldScenario 2 · · · · · ·• 
constant at Scenario 1 level.. 

Scenario 3 · · · · · ·• Phase 1 rail is completed. Endogenous worker choices.. 

Phase 2 rail is completed. Worker choices are heldScenario 4 · · · · · ·• 
constant at Scenario 3 level.. 

Scenario 5 · · · · · ·• Phase 2 rail is completed. Endogenous worker choices.. 

NOTE: A description of the scenarios estimated. The locations of Phase 1 and Phase 2 rail stations 
are shown in Figure 1. 

low-income workers using transit and 8.5 percent of high-income workers using transit. 

After Phase 1 rail is completed (Scenario 2) and workers are allowed to reoptimize their 

home, work, and mode-choice decisions (Scenario 3), I fnd that public-transit-mode 

share increases to 18.3 percent for low-income workers and to 9.0 percent for high-

income workers. I fnd a larger efect for Phase 2 rail, which provides a rail option 

for a larger share of commuting routes. After workers reoptimize according to Phase 2 

rail (Scenario 5), I fnd that low- and high-income worker transit-mode shares rise to 

19.3 percent and 10.8 percent, respectively. Comparing Scenario 1 to Scenario 5, I fnd 

that the overall public-transit-mode share rises from 13.2 percent to 15.0 percent—a 

14 percent increase. The majority of the improvement (77 percent) is due to Phase 2 

rail. Phase 2 also attracts relatively more high-income workers to public transit, as the 

Phase 2 stations serve more routes where high-income workers hold a preference. 

The Scenario 1 solution shows that the average one-way commute time for a low-

income worker is 22.7 minutes and that the average for a high-income worker is 19.4 

minutes. The changes in commute times are summarized in Figure 8B. The introduction 

of Phase 1 rail lowers average commute times, as workers who use transit along the 

rail route beneft from shorter commuting times (Scenario 2). The majority of initial 

commute-time benefts accrue to low-income workers, who are currently the primary 

users of transit on Oahu, particularly along the routes served by Phase 1 rail. After 

the opening of Phase 1 rail, the island-wide average low-income commute time falls 

to 22.6 minutes (a 0.5 percent reduction), while the high-income average commute 

time remains virtually unchanged (a 0.1 percent reduction). Once endogenous worker 
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Figure 8: Changes in Aggregate Outcomes 

A. Public-Transit-Mode Share 

B. Average Commute Time 

C. Employment Rate 

− All workers −−− High-income workers −−− Low-income workers 

NOTE: The graphs show the progression of rail’s efect on three outcomes. Scenario 
1 corresponds to the pre-rail period, while Scenario 5 corresponds to the full rail 
system with endogenous worker choices. Full scenario descriptions are provided in 
Figure 7. 

choices are allowed, all of the commuting-time gains are erased. The primary mechanism 
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that causes rail to result in higher commute times is that transit is a slower mode of 

transportation, even after the improvements attributable to rail. The increase in public-

transit-mode share (Figure 8A) translates to a rise in average commute time. As a 

second-order efect, the allocation of rail represents a local amenity to the neighborhoods 

with rail stations, pushing up local housing costs. Because the location decisions of 

low-income workers are sensitive to rents, this causes some low-income workers to leave 

the rail-serving areas for locations with lower housing costs. Low-housing-cost areas 

tend to be more peripheral and often include longer commutes. Additionally, lowering 

commuting costs present workers with the opportunity to live farther from their work 

location, which diminishes the time savings of rail. 

In Scenario 4, with the introduction of the full Phase 2 rail line, the commute times 

for both low- and high-income workers fall again. The relative efect on high-income 

workers is larger in Phase 2 because the location of the new stations aligns more closely 

with existing high-income commute fows. After I allow for full endogenous sorting 

(Scenario 5), I fnd that commute times rise again. In the fnal equilibrium, I fnd 

that the average commute time across all Oahu workers increases by 1.7 percent (or 

21 seconds) compared to a scenario in which rail was never built. The introduction 

of transit systems is often meant to reduce commuting times. It is important to note 

that when endogenous worker choices are considered, the improvement of public-transit 

infrastructure can raise the average commuting time across the labor market. While I 

do not account for potentially improved trafc conditions due to mode-switching away 

from private vehicles, in the long run, induced demand suggests that private-vehicle 

time savings will be negligible (Duranton and Turner, 2011). 

Figure 8C summarizes the efects on the share of workers who are employed. High 

commuting costs are a disincentive to employment. The provision of rail service allows a 

worker to access more employment opportunities for a given amount of commuting costs. 

Depending on workers’ idiosyncratic preferences across home location, work location, 

and mode, the reduced commuting costs will push marginal workers into employment. 

Across all workers, I fnd that the full Phase 2 rail system increases the employment 

rate by 0.4 percentage points—from 66.4 percent to 66.8 percent. The efect among 

low-income workers is a 0.4 point increase, whereas the efect on high-income workers is 

a 0.5 point increase. According to ACS data for Oahu, aggregate annual income is $43 

billion, meaning the induced employment efect could generate roughly $257 million in 

new annual income on Oahu. Some of this income could be captured by the county and 

state as tax revenue. 
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Figure 9 displays the block-level estimated changes in housing cost (pj ) between 

Scenarios 1 and 5. I estimate signifcant increases in housing costs for blocks near the 

new rail stations. The block experiencing the largest increase in housing costs sees an 

increase of 5.4 percent, while the largest decrease experienced is 0.6 percent. The cost 

increases near stations are largely ofset by rent decreases in neighborhoods far from 

stations, which become comparatively less desirable. 

Figure 9: Estimated Changes in Local Housing Costs 

NOTE: The map shows the predicted housing-cost efects of the rail system at the 
block level. Prices generally increase near rail stations and fall elsewhere. Areas 
with no worker populations are shown in gray. Rail stations are shown as black 
dots. 

Some interesting substitution patterns emerge from the model. For example, I 

fnd price increases in the Oahu neighborhood of Kailua, located in the northeast part 

of the island, despite Kailua being far from rail. Routes originating from Kailua have 

high preference parameters among high-income workers. The substitution pattern is 
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consistent with high-income workers’ moving away from rail neighborhoods toward 

Kailua. High-income workers are less likely to use rail but would still need to pay the 

higher housing costs associated with increased neighborhood demand. Therefore, rail 

may push out high-income workers and cause them to select alternative neighborhoods 

that match their preferences. I also observe housing-cost increases on the far west side 

of Oahu and in the central Oahu neighborhood of Mililani. Both of these neighborhoods 

have bus service that connects to the new rail system, meaning the rail improves the 

accessibility from these neighborhoods through the transit network, despite rail not 

connecting to these areas directly. 

7 Conclusion 

I estimate the efects of Oahu’s rail system through a neighborhood choice model. 

I show that modeling endogenous worker decisions is key to estimating the aggregate 

efects of the system. By directly modeling worker behavior I am able to provide real-

istic estimates of aggregate rail impacts. While a common motivation for constructing 

transit improvements is to reduce commute times, I fnd that the Oahu system is likely 

to marginally increase the average time spent commuting by a worker on Oahu. How-

ever, this is due to the system’s success in shifting a meaningful share of the workforce 

(1.8 percent) away from private-vehicle commuting to public-transit commuting. Fur-

thermore, the option of reasonably fast and afordable public transit encourages some 

workers to enter the labor force. I estimate the full rail system will increase Oahu’s 

employment rate by 0.4 percentage points by alleviating spatial mismatch. 

One limitation of the model is the assumption of a “closed city.” The creation of a 

valuable public amenity is likely to make workers from outside of Oahu marginally more 

likely to move to Oahu, which may fuel further rent increases around stations and have 

other second-order efects. Modeling workers as independent agents is also a limita-

tion, as many workers are in dual-earner households and face a more complex situation 

in terms of optimizing their location. A complementary policy toward rail service on 

Oahu has been an attempt to generate new housing near rail stations through zon-

ing changes that encourage transit-oriented development. I do not model endogenous 

housing-supply responses, and I consider this process to be separate from the impacts 

of rail. Despite these limitations, I believe that this paper provides realistic estimates 

for the probable efects of rail. All of the paper’s main results are driven by endogenous 

worker choices. This highlights the importance of urban-neighborhood-choice modeling 
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in evaluating urban transit projects. 

This paper contributes to the literature on discrete neighborhood-choice modeling, 

as well as studies on transportation infrastructure evaluation. I analyze a data set with 

richer spatial variation than has been attempted in any prior related works. Census-

block-level analysis allows the model to capture extremely local impacts of rail. Work-

ers are rarely willing to walk signifcant distances to reach rail. Many studies assume 

pedestrian catchment areas extend only about 0.5 miles from a station (Guerra et al., 

2012). Therefore, the use of larger geographic units will be unable to accurately capture 

commuter incentives. I propose a method to overcome the issue of commute matrix 

“sparseness,” as defned in Dingel and Tintelnot (2023). The combination of multi-

ple worker types, explicit modeling of transportation costs, and a nested approach to 

modeling route-level preference parameters and neighborhood choice provides a unique 

modeling approach that may be helpful for research in other settings. 
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Davis, M. A. and Ortalo-Magné, F. (2011). Household expenditures, wages, rents. 
Review of Economic Dynamics, 14(2):248–261. 

Dingel, J. I. and Tintelnot, F. (2023). Spatial economics for granular settings. National 
Bureau of Economic Research. 

27 



Duranton, G. and Turner, M. A. (2011). The fundamental law of road congestion: 
Evidence from us cities. American Economic Review, 101(6):2616–52. 

Epple, D. and Sieg, H. (1999). Estimating equilibrium models of local jurisdictions. 
Journal of Political Economy, 107(4):645–681. 

Fujita, M. and Ogawa, H. (1982). Multiple equilibria and structural transition of 
non-monocentric urban confgurations. Regional Science and Urban Economics, 
12(2):161–196. 

Glaeser, E. L., Kahn, M. E., and Rappaport, J. (2008). Why do the poor live in cities? 
The role of public transportation. Journal of Urban Economics, 63(1):1–24. 

Guerra, E., Cervero, R., and Tischler, D. (2012). Half-mile circle: Does it best represent 
transit station catchments? Transportation Research Record, 2276(1):101–109. 

Gupta, A., Van Nieuwerburgh, S., and Kontokosta, C. (2022). Take the Q train: Value 
capture of public infrastructure projects. Journal of Urban Economics, 129:103422. 

Holzer, H. J., Quigley, J. M., and Raphael, S. (2003). Public transit and the spatial 
distribution of minority employment: Evidence from a natural experiment. Journal 
of Policy Analysis and Management, 22(3):415–441. 

Kain, J. F. (1968). Housing segregation, negro employment, and metropolitan decen-
tralization. The Quarterly Journal of Economics, 82(2):175–197. 

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. Fron-
tiers in Econometrics, pages 105–142. 

Mills, E. S. (1967). An aggregative model of resource allocation in a metropolitan area. 
The American Economic Review, 57(2):197–210. 

Muth, R. F. (1969). Cities and housing; the spatial pattern of urban residential land 
use. 

Severen, C. (2019). Commuting, labor, and housing market efects of mass transporta-
tion: Welfare and identifcation. The Review of Economics and Statistics, pages 
1–99. 

Sieg, H., Smith, V. K., Banzhaf, H. S., and Walsh, R. (2004). Estimating the general 
equilibrium benefts of large changes in spatially delineated public goods. Interna-
tional Economic Review, 45(4):1047–1077. 

Small, K. A., Winston, C., and Yan, J. (2005). Uncovering the distribution of motorists’ 
preferences for travel time and reliability. Econometrica, 73(4):1367–1382. 

Tyndall, J. (2017). Waiting for the R train: Public transportation and employment. 
Urban Studies, 54(2):520–537. 

28 



Tyndall, J. (2021). The local labour market efects of light rail transit. Journal of 
Urban Economics, 124:103350. 

Tyndall, J. (2023). Estimating commuter benefts of a new transit system: Evidence 
from New York City’s ferry service. SSRN 4634157. 

29 


	Predicting Rail Transit Impacts with Endogenous Worker Choice: Evidence from Oahu
	Citation

	24-409 WP Title Page.pdf

